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Abstract
First-order organic matter decomposition models are used within most Earth 
System Models (ESMs) to project future global carbon cycling; these models have 
been criticized for not accurately representing mechanisms of soil organic carbon 
(SOC) stabilization and SOC response to climate change. New soil biogeochemical 
models have been developed, but their evaluation is limited to observations from 
laboratory incubations or few field experiments. Given the global scope of ESMs, 
a comprehensive evaluation of such models is essential using in situ observations 
of a wide range of SOC stocks over large spatial scales before their introduction to 
ESMs. In this study, we collected a set of in situ observations of SOC, litterfall and 
soil properties from 206 sites covering different forest and soil types in Europe and 
China. These data were used to calibrate the model MIMICS (The MIcrobial-MIneral 
Carbon Stabilization model), which we compared to the widely used first-order 
model CENTURY. We show that, compared to CENTURY, MIMICS more accurately 
estimates forest SOC concentrations and the sensitivities of SOC to variation in soil 
temperature, clay content and litter input. The ratios of microbial biomass to total 
SOC predicted by MIMICS agree well with independent observations from globally 
distributed forest sites. By testing different hypotheses regarding (using alternative 
process representations) the physicochemical constraints on SOC deprotection and 
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1  | INTRODUC TION

Soil organic carbon (SOC) is the largest terrestrial carbon (C) pool 
(Ciais et al., 2013), and it contains more than three times as much 
C as either the atmosphere or terrestrial vegetation. Therefore, a 
small change (<1%) in the global SOC pool might drastically alter 
the land-atmosphere C balance (Heimann & Reichstein, 2008; Shi, 
Crowell, Luo, Moore, 2018). SOC is also closely related to soil fertil-
ity, structure, water holding capacity and ecosystem biogeochemical 
cycles (Campbell & Paustian, 2015; Six, Bossuyt, Degryze, & Denef, 
2004). Dynamics of SOC have received increasing attention in many 
research areas ranging from small-scale projects for preserving or 
improving soil health to large-scale climate change mitigation (e.g. 
the “4per1000” initiative; Lal, 2016). Soil biogeochemical models are 
the main tools for estimating global land C stock and the interactions 
between SOC dynamic and changes in climate and land use.

The majority of global soil C models are developed based on 
first-order kinetics, in which the decomposition rate of organic matter 
is proportional to the pool size and turnover rate, modified by environ-
mental factors (Manzoni & Porporato, 2009; Parton, Schimel, Cole, & 
Ojima, 1987). These models are mathematically simple and stable, and 
have been proven effective for simulating soil organic matter dynamics 
(e.g. the decreasing trend of remaining organic matter mass during de-
composition experiments; Barré et al., 2010; Bonan, Hartman, Parton, 
& Wieder, 2013). However, these models are unable to mechanically 
represent the transient SOC dynamics in response to increased fresh 
litter input (Fontaine et al., 2007; Guenet, Danger, Abbadie, & Lacroix, 
2010; Kuzyakov, 2010), likely because they lack explicit representa-
tion of microbial decomposition and SOC stabilization (Creamer et al., 
2015; Schmidt et al., 2011). Earth System Models (ESMs) which use the 
first-order soil C models also show poor agreement with global spatial 
variation of SOC stock (Hararuk & Luo, 2014; Todd-Brown et al., 2013; 
Wu, Piao, Liu, Ciais, & Yao, 2018). Moreover, the conceptual SOC pools 
used in conventional models are largely not observable (Abramoff 
et al., 2018; Elliot, Paustian, & Frey, 1996; Robertson et al., 2019), 
making it challenging to validate conventional soil C models using field 
observations (Six & Paustian, 2014; Viscarra Rossel et al., 2019).

New theories and soil biogeochemical models have been de-
veloped to explicitly represent microbial biomass and physiology 

(Abramoff, Torn, Georgiou, Tang, & Riley, 2019; Abramoff et al., 
2018; Allison, 2012; Campbell et al., 2016; Cotrufo, Wallenstein, 
Boot, Denef, & Paul, 2013; Huang et al., 2018; Robertson et al., 2019; 
Wieder, Grandy, Kallenbach, & Bonan, 2014). These microbial mod-
els are valuable for testing specific responses of SOC at small spatial 
scales, such as the effect of short-term priming observed during lit-
ter manipulation experiments or the addition of labile organic mat-
ter to the incubated soil samples in the laboratory. However, they 
introduce parameters determined from short-term experiments or 
under laboratory conditions. Thus, microbial models add uncer-
tainty to large-scale simulations (Robertson et al., 2019; Shi et al., 
2018; Stockmann et al., 2013; Wang et al., 2014) because most of 
these models are calibrated against observed litter or SOC decom-
position rates obtained from limited laboratory or field experiments 
(Campbell et al., 2016; Georgiou, Abramoff, Harte, Riley, & Torn, 
2017; Wieder, Grandy, et al., 2014). Robust datasets which can be 
used to comprehensively evaluate the simulated quasi-equilibrium 
SOC pool sizes are still scarce (Wieder, Boehnert, & Bonan, 2014). 
Furthermore, it remains difficult to determine whether microbial 
explicit models outperform conventional first-order models on pre-
dicting large-scale SOC spatial gradients and temporal dynamics 
(Campbell & Paustian, 2015; Wieder, Grandy, Kallenbach, Taylor, 
& Bonan, 2015; Wieder et al., 2018). Microbial models have to be 
carefully calibrated and evaluated before they are used to replace 
conventional first-order models in ESMs (Wang et al., 2014; Wieder, 
Bonan, & Allison, 2013).

Several studies have calibrated and validated microbial decom-
position models (Robertson et al., 2019; Wieder et al., 2013, 2015) 
using globally gridded soil databases such as the Harmonized Word 
Soils Database (HWSD, FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and 
the Northern Circumpolar Soil Carbon Database (NCSDC, Tarnocai 
et al., 2009). However, these global databases do not contain un-
certainty estimates (Dai et al., 2018), and previous studies have 
identified significant differences between SOC estimates from 
these databases or between grid-scale estimates from these data-
bases and point-scale in situ observations (Tifafi, Guenet, & Hatté, 
2018; Figure S1). In addition, there is still no reliable globally grid-
ded database of plant litter input. Uncertainties in the boundary 
conditions (e.g. litter inputs simulated by ESMs and soil physical and 

microbial turnover in MIMICS, the errors of simulated SOC concentrations across 
sites were further decreased. We show that MIMICS can resolve the dominant mech-
anisms of SOC decomposition and stabilization and that it can be a reliable tool for 
predictions of terrestrial SOC dynamics under future climate change. It also allows us 
to evaluate at large scale the rapidly evolving understanding of SOC formation and 
stabilization based on laboratory and limited filed observation.
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chemical properties) used as model forcing data further hamper the 
use of these global databases for model evaluation. An alternative 
approach is to calibrate and evaluate the microbial-explicit SOC 
models using extensive in situ observations of SOC contents, soil 
properties, litterfall production and climate conditions. Moreover, to 
ensure that the tested microbial model can capture many key pro-
cesses related to SOC decomposition and stabilization, rather than 
only simulate the total SOC contents, it is necessary to evaluate the 
simulated composition of different C pools to total SOC, the turn-
over time of each C pool, and the sensitivity of SOC content to litter 
input and soil properties.

In this study, we compiled a large set of in situ observations of 
SOC concentrations for northern forests, as well as related soil prop-
erty measurements (e.g. texture, bulk density and pH), annual litter 
input and climate from 206 forest sites distributed across different 
climate zones of Europe and China. Using this database, we calibrated 
and evaluated the first-order soil biogeochemical model CENTURY 
(Parton et al., 1987) and the microbial trait-based model MIMICS 
(MIcrobial-MIneral Carbon Stabilization, Wieder et al., 2015). To 
evaluate the simulated SOC composition, we acquired observations 
of the ratio of microbial biomass to total SOC, and the SOC fractions 
that represent the different SOC pools in the total SOC stock from 
sites that are independent from the European and Chinese sites.

The aim of this study is to assess the strength and weakness 
of microbial implicit and microbial explicit models in simulating the 
stocks and composition of SOC with the intent of guiding future ex-
periments and model developments. Specifically, we (a) compared 
CENTURY and MIMICS with observed forest SOC concentrations 
at the continental scale, and explored the sources of model biases; 
(b) quantified the sensitivity of CENTURY- and MIMICS-simulated 
sensitivities of SOC concentration to changing soil conditions and 
litterfall inputs; (c) evaluated the MIMICS-simulated SOC composi-
tions including ratios of microbial biomass to total SOC and the pro-
portions of different SOC pools using observed values globally and 
(d) explored the main drivers of the variation in SOC composition. 
Finally, we discussed the implications of our results for SOC model-
ling at global scales.

2  | MATERIAL S AND METHODS

2.1 | Observation data on SOC concentration and 
soil properties

To calibrate and evaluate both soil C models under a wide range of 
climate conditions and forest types, we compiled observed SOC 
concentrations and the corresponding plant biomass, litterfall, soil 
properties (e.g. bulk density, soil texture, pH) and climate condi-
tions (mean annual temperature) from 72 European forest sites 
and 134 Chinese forest sites (Figure S2). The European sites are 
part of the International Co-operative Programme on Assessment 
and Monitoring of Air Pollution Effects on Forests (ICP Forests, 
http://icp-fores ts.net) operating under the UNECE Air Convention 

and featuring consistent methods and harmonized data across the 
whole network (Fleck, Cools, De Vos, Meesenburg, & Fisher, 2016; 
Ukonmaanaho, Pitman, Bastrup-Birk, Breda, & Rautio, 2016). The 
Chinese forest sites belong to a reviewable and consistent na-
tionwide inventory system established by the Chinese Ministry 
of Forestry (Tang et al., 2018). The forest stand ages at most sites 
are older than 40 years. In situ observations are mostly conducted 
during the period from 2000 to 2015, with durations ranging from 
one to more than 10 years. The observation sites cover four forest 
types (temperate needle-leaved evergreen forest (TeNE), temper-
ate broad-leaved evergreen forest (TeBE), temperate broad-leaved 
summer-green forest (TeBS), boreal needle-leaved evergreen for-
est (BoNE)) and more than 15 soil types (based on the FAO-90 soil 
classification in HWSD v1.2). Mean annual temperatures of the ob-
servation sites span a large range from −10°C to higher than 20°C 
(Figure S3a). Values of mean annual total precipitation ranged from 
less than 300 mm/year to more than 2,000 mm/year (Figure S3b). 
Annual total litterfall production was between 100 g C m−2 year−1 
and 2,000 g C m−2 year−1 (Figure S3c). Soil properties at the observa-
tion sites vary widely (Figure S3d–i), with soil pH ranges from 4.5 to 
8.5, and clay fraction ranges from 1% to 45%. Moreover, observation 
data at European ICP Forest sites provide measurements of SOC con-
centrations and soil properties at four different layers (0–10, 10–20,  
20–40, 40–80 cm) of the top 80 cm soil, whereas data at Chinese 
sites provide the mean condition of the top 1 m soil.

At the European ICP Forest sites, leaf litterfall (including twig 
litterfall for some sites) was measured in situ, but not wood and 
root litterfall. We estimate the wood litterfall based on the ratios 
of wood litterfall to leaf litterfall, and the root litterfall based on the 
root turnover rates and the ratios of root biomass to leaf biomass 
(Table S1). At Chinese sites, there are no in situ observations of lit-
terfall. We calculated the leaf, wood and root litterfall from observed 
standing biomass (including leaf, wood and root) and the annual leaf 
and root turnover rates and the ratios of wood litterfall to leaf litter-
fall (Table S1). The leaf and root turnover rate, the ratios of wood and 
root litterfall to leaf litterfall and the ratios of root biomass to leaf 
biomass used in this study were obtained from a statistical analysis 
of extensive global observations (Holland et al., 2015; Jia, Zhou, & 
Xu, 2016; Zhang, Yuan, Dong, & Liu, 2014; Figure S4).

C:N ratios of leaf litterfall at both European and Chinese sites 
were measured in situ. C:N ratios of wood and root litterfall, as well 
as the litterfall lignin:C ratios for each forest type were obtained 
from the global Fine-Root Ecology Database (FRED, Iversen et al., 
2017), the TRY database (Kattge et al., 2011) and the Long-Term 
Inter-site Decomposition Experiment Team (LIDET, Harmon et al., 
2009).

The soil base saturation (BS, %), Cation Exchange Capacity (CEC, 
cmol/kg) and soil gravel content (% of volume) at each observation 
site were obtained from the Global Soil Dataset for Earth System 
Models (GSDE, Shangguan, Dai, Duan, Liu, & Yuan, 2014). Soil type 
was determined based on the map from HWSD v1.2. Annual mean 
soil water content (%) was extracted from the estimation of land sur-
face model ORCHIDEE-trunk (r5504, Krinner et al., 2005). LAI and 

http://icp-forests.net
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NDVI data were extracted from the GLASS (resolution: 0.05°, Liang 
et al., 2013) and GIMMS NDVI products (resolution: 8 km, Tucker 
et al., 2005), respectively. Evapotranspiration (ET) and the potential 
evapotranspiration (PET) were obtained from Jung et al. (2010) and 
the CRUNCEP v7 database (Viovy, 2018), respectively. More details 
of the datasets used in this study are shown in Table S1.

2.2 | Decomposition models

2.2.1 | CENTURY

We selected the CENTURY model (the version presented by Parton 
et al., 1987) to represent first-order soil biogeochemical models be-
cause it has been widely incorporated into ESMs (e.g. Koven et al., 
2013; Krinner et al., 2005; Sitch et al., 2003). In CENTURY, organic 
matter is separated into metabolic litter (high quality, LITm) and struc-
tural litter (low quality, LITs) and three SOC pools (active pool (SOCact), 

slow pool (SOCslow), passive pool (SOCpas)) with different turnover 
times (Figure 1a). Fresh litter inputs are partitioned into metabolic 
and structural litter pools based on a linear function (fmet, dimension-
less) of litter lignin to nitrogen (N) ratios (LN; Parton et al., 1987):

There is no explicit representation of microbial biomass in 
CENTURY. The decomposition of litter and SOC is described by 
first-order kinetics. At each daily time step, the decomposition of 
litter or SOC (mg C cm−3 day−1) is calculated as following:

where Cs (mg C/cm3) is an individual litter or SOC pool, Ic 
(mg C cm−3 day−1) is the C input to the pool considered, kmax is the po-
tential maximum turnover rate of Cs (day−1) and is equal to the recip-
rocal of maximum turnover time. f(tem), f(swc) and f(clay) are the soil 

(1)fmet=max
(

0.0, 0.85−0.013×LN
)

.

(2)
dCs

dt
= Ic−kmax×Cs× f (tem)× f (swc)× f (clay),

F I G U R E  1   Soil C pools and fluxes represented in CENTURY (a) and MIMICS (b). In both models, litter inputs (Litinp) are partitioned into 
metabolic and structural litter pools (LITm and LITs) based on litter quality (fmet). The soil organic carbon (SOC) in CENTURY are divided 
into active (SOCact), slow (SOCslow) and passive (SOCpas) pools. CUE is the carbon use efficiency of decomposed litter or SOC. In MIMICS, 
decomposition of litter and available SOM pools (SOCa) are governed by temperature sensitive Michaelis–Menten kinetics (Vmax and Km). 
Microbial growth efficiency (MGE) determines the partitioning of C fluxes entering microbial biomass pools versus heterotrophic respiration. 
Turnover of the microbial biomass (τ) depends on microbial functional type (MICr and MICk), and is partitioned into available, physically and 
physicochemically protected, and chemically recalcitrant SOC pools (SOCa, SOCp, and SOCc, respectively). fi,met and fi,stru denote the fraction 
of decomposed metabolic litter to SOCp and the fraction of decomposed structural litter to SOCc, respectively. fp and fc denote the fraction 
of τ partitioned to SOCp and the fraction of τ partitioned to SOCc, respectively [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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temperature factor, moisture factor and clay factor modulating decom-
position rate, respectively.

2.2.2 | MIMICS (default and modified versions)

The default version of MIMICS (MIMICS-def)
The MIMICS model (Wieder, Grandy, et al., 2014; Wieder et al., 
2015) explicitly considers the relationships among litter quality, 
functional trade-offs in microbial physiology, and the physical and 
physicochemical protection of microbial byproducts in forming sta-
ble soil organic matter. Like CENTURY, MIMICS also has two types 
of litter pool: metabolic (LITm) and structural (LITs) litter (Figure 1b), 
and the method used to partition fresh litter input into metabolic 
and structural pools (fmet, Figure 1b) is the same as that used in 
CENTURY (Equation 1). SOC in MIMICS is divided into three pools: 
the physically and physicochemically protected (SOCp), the chemi-
cally recalcitrant (SOCc) and available (SOCa). Two microbial func-
tional types are represented in MIMICS that roughly correspond to 
microorganisms with copiotrophic (r-strategy, MICr) and oligotrophic 
(k-strategy, MICk) growth strategies (Figure 1b). The MICr is as-
sumed to have higher growth and turnover rates and prefers to con-
sume more labile litter (LITm), whereas the MICk has relatively lower 
growth and turnover rates and is more competitive when consuming 
low-quality litter (LITs) and chemically recalcitrant SOC (SOCc).

C fluxes in MIMICS are simulated at an hourly (h) time step. 
Decomposition of litter and SOC pools (mg C cm−3 hr−1) is based 
on temperature-sensitive Michaelis–Menten kinetics (Allison, 
Wallenstein, & Bradford, 2010; Schimel & Weintraub, 2003) through 
the equation:

where Cs (mg C/cm3) is a substrate pool (LIT or SOC) and MIC (mg C/cm3)  
corresponds to the biomass of each microbial pool (MICr or MICk).  
Ic is the C input to the pool considered (mg C cm−3 hr−1). Vmax and Km 
are the microbial maximum reaction velocity (mg C (mg MIC)−1 hr−1) and 
half-saturation constant (mg C/cm3), respectively. They are calculated 
as follows:

where T is the soil temperature (°C), Vmod and Kmod represent the mod-
ifications of Vmax and Km based on assumptions regarding to microbial 
functional types, litter chemical quality and soil texture effects, av and 
ak are the tuning coefficient of Vmax and Km, respectively. Vslope and 
Kslope are two regression coefficients. Vint and Kint are the regression 
intercepts.

Decomposition rate of substrates and the microbial growth ef-
ficiency (MGE, Figure 1b) determine the growth rate of microbes. 

The turnover of MICr and MICk (MICτ, mg C cm−3 hr−1) at each time 
step is calculated based on their specific turnover rate (kmic, hr−1),  
annual total litterfall input (LITtot, g C m−2 year−1) and fmet by 
following:

where aτ (=1.0, dimensionless) is a tuning coefficient of kmic. c is the re-
gression coefficients, and its value is 0.3 for MICr and 0.1 for MICk. Turn-
over of microbial biomass provides C inputs to SOC pools (Figure 1b).  
The fractions of microbial residues to different SOC pools are de-
termined by soil clay content (fclay) and the quality of litter inputs  
(lignin:N), and can be specifically calculated by following:

where frp, fkp, frc, fkc, fra and fka represent the fractions of MICr and MICk 
residues to SOCP, SOCc and SOCa, respectively. LN is the lignin:N ratio. 
a1–5 are coefficients and their values in default MIMICS are found in 
Table S1. In addition to microbial residues, a fraction of inputs (fi,met and 
fi,stru) which bypasses litter and microbial biomass pools is transferred 
directly to corresponding SOC pools (Figure 1b).

The transfer of SOCp to SOCa (D, mg C cm−3 hr−1), which is 
intended to represent the deprotection of SOC, that is, desorp-
tion of physicochemically protected SOC from mineral surfaces 
and/or the breakdown of aggregates deprotecting physically pro-
tected SOC, is calculated as a function of soil clay content (fclay) 
by following:

where kd (=1.0, dimensionless) is a tuning coefficient of the deprotec-
tion rate. Some parameter values of the default MIMICS are provided 
in Table S1. Please see Wieder, Grandy, et al. (2014), Wieder et al. 
(2015) for more details of the structure, algorithms, parameters and 
underlying assumptions of MIMICS.

MIMICS with revised SOC deprotection rate (MIMICS-D)
In addition to the default version of MIMICS (MIMICS-def), we 
also developed and tested a new version of MIMICS (MIMICS-D) 
that considers the saturation of SOC protected by the mineral 

(3)
dCs

dt
= Ic−MIC×

Vmax×Cs

Km+Cs

,

(4)Vmax=eVslope×T+Vint ×av×Vmod,

(5)Km=eKslope×T+Kint ×ak×Kmod,

(6)MIC
�
=a

�
×kmic×e

c×fmet ×max

(

min

(
√

LITtot, 1.2

)

, 0.8

)

×MIC,

(7)frp=min
(

1.0, a1×e
1.3×fclay

)

,

(8)fkp=min
(

1.0, a2×e
0.8×fclay

)

,

(9)frc=min
(

1.0− frp, a4×e
a3×fmet

)

,

(10)fkc=min
(

1.0− fkp, a5×e
a3×fmet

)

,

(11)fra=1.0− frp− frc,

(12)fka=1.0− fkp− fkc,

(13)D=1.5×10−5
×kd×e

−1.5×fclay ,
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matrix (SOCp). In the MIMICS-def, the deprotection rate of SOCp 
in a specific soil was a fixed value determined by the abundance 
of the soil clay fraction (Equation 13). However, field and labo-
ratory research suggests that there might be an upper limit, or 
‘saturation level’, in the amount of physicochemically and physi-
cally protected SOC that can be held in soil (Robertson et al., 
2019; Six et al., 2002; Stewart, Paustian, Conant, Plante, & Six, 
2007). Deprotection rate of the SOC protected by the mineral 
matrix is closely related to this saturation degree (defined as the 
ratio of existing SOCp to the soil maximum adsorption capacity; 
Kothawala, Moore, & Hendershot, 2008; Wang, Post, & Mayes, 
2013). In this study, we did not calculate the maximum adsorption 
capacity directly, as it is determined by soil physical and chemi-
cal characteristics, and there is still no widely recognized method 
to calculate it (Campbell & Paustian, 2015; Huang et al., 2018; 
Lützow et al., 2006), The upper limit of SOCp was represented by 
assuming that the deprotection rate increases exponentially with 
the pool size of SOCp:

where kdp is a coefficient for tuning the relationship between the 
deprotection rate (D) and the pool size of SOCp.

MIMICS considering the impact of BS on deprotection rate 
(MIMICS-DB)
We tested several new modifications of MIMICS to see whether the 
inclusion of soil chemical properties (BS and pH) could further de-
crease the uncertainties in simulated SOC concentrations. We modi-
fied the microbial maximum reaction velocity (Vmax, Equation 4), the 
C input rates to SOCp (fp and fi,met in Figure 1b) and the deprotection 
rate of SOCp with some simple linear or exponential functions of soil 
BS and pH, separately. In this study, we only present the results from 
the modification called MIMICS-DB, where the modified deprotec-
tion rate of SOCp is calculated as:

where kbs is a coefficient modifying the impacts of BS on the depro-
tection rate.

MIMICS considering density-dependent microbial turnover rate 
(MIMICS-DBT)
Following the method of Georgiou et al. (2017), we also incorpo-
rated a density-dependent microbial turnover rate into MIMICS. In 
this version (MIMICS-DBT), microbial turnover rate increases with 
growing microbial biomass density (MIC, mg C/cm3) by modifying 
Equation (6):

where β is the density-dependence exponent.

2.3 | Model parameterization and validation against 
SOC concentrations

We assumed that all the forest sites included in this study are at 
steady state (i.e. no interannual variation of SOC, litterfall and stand 
biomass). CENTURY and the four versions of MIMICS introduced 
above (Table 1) were then calibrated and evaluated against the 
‘equilibrium’ SOC concentrations using observation data of soil tex-
ture, annual total litterfall and mean annual temperature. We also 
ignored the interannual and seasonal dynamics of climate and veg-
etation. Historical climate, litterfall input and soil properties were 
all assumed to be similar to the average condition during the ob-
servation period. Vertical discretization in SOC and soil properties 
are not considered in CENTURY and MIMICS. We focus only on the 
spatial variation of average SOC concentrations in the upper soil 
horizons (0–80 cm for European sites and 0–1 m for Chinese sites). 
The semi-analytic approach was used to calculate the steady state 
microbial and soil C pool sizes (Xia, Luo, Wang, Weng, & Hararuk, 
2012) based on annual total litterfall production (evenly distributed 
to each time step of simulation), annual mean soil temperature and 
moisture conditions and observed soil properties at each forest site.

Parameters of CENTURY and MIMICS were optimized against the 
observed SOC concentrations (Table 1). Although many parameters 
(e.g. carbon use efficiency and parameters related to the constraints 
of temperature and soil clay on C decomposition rate) of CENTURY 
and MIMICS can impact the simulated SOC concentrations, we only 
optimized the parameters which directly control the organic matter de-
composition rates. Because these parameters generally contain large 
uncertainties and the simulated SOC stocks are generally more sen-
sitive to these parameters than to other model parameters (Shi et al., 
2018; Wieder, Grandy, et al., 2014; Wieder et al., 2015). Specifically, we 
added two scaling parameters klitt and ksoc (dimensionless) in CENTURY 
to tune the turnover rates of litter and SOC pools, respectively.

(14)D=1.5×10−5
×kd×e

−1.5×fclay ×ekdp×SOCp ,

(15)D=1.5×10−5
×kd×e

−1.5×fclay ×ekdp×SOCp ×ekbs×BS,

(16)MIC
�
=a

�
×kmic×e

c×fmet ×max

(

min

(
√

LITtot, 1.2

)

, 0.8

)

×

(

MIC
)

�

,

(17)kmax _litt_opt=klitt×kmax _litt,

(18)kmax _soc_opt=ksoc×kmax _soc,

TA B L E  1   Tested models in this study and parameters subject to 
optimization of each model

Model
Optimized 
parameters

CENTURY klitt, ksoc

MIMICS-def av, ak, kd

MIMICS-D av, ak, kd, kdp

MIMICS-DB av, ak, kd, kdp, kbs

MIMICS-DBT av, ak, kd, kdp, kbs, β

Note: klitt and ksoc tune the turnover rate of litter and SOC pools in 
CENTURY, respectively. av and ak are parameters tune microbial 
maximum reaction velocity (Equation 4) and half-saturation constant 
(Equation 5). kd, kdp and kbs tune the deprotection rate of SOCp 
(Equations 13–15). β tunes the density-dependent microbial turnover 
rate (Equation 16).
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where kmax_litt and kmax_litt_opt are the default and optimized litter turn-
over rates, respectively. kmax_soc and kmax_soc_opt are the default and op-
timized SOC turnover rates, respectively. The default litter and SOC 
turnover rates (see Table S2) were obtained from Parton et al. (1987). 
Optimization of only klitt and ksoc may be not enough to minimize the 
uncertainties in the turnover rates of litter and SOC pools and the sim-
ulated SOC concentrations. We therefore also tested the effectiveness 
of CENTURY on capturing observed SOC concentrations when five 
free parameters were introduced to tune the turnover rates of met-
abolic litter, structural litter, active SOC, slow SOC and passive SOC, 
respectively (Figure S5).

For the MIMICS models, we optimized the scaling parameters 
(av, ak and kd) of the microbial maximum reaction velocity (Vmax, 
Equation 4), half-saturation constant (Km, Equation 5) and of the 
deprotection rate of SOCp (Equations 13–15), as they are all closely 
related to the decomposition and the physical stabilization of or-
ganic matter (Wieder, Grandy, et al., 2014; Wieder et al., 2015). 
Parameters in the newly introduced equations (Equations 14–16) for 
modifying deprotection rates and microbial turnover rate were also 
optimized (Table 1).

Parameter optimization was performed using the shuffled com-
plex evolution (SCE) algorithm developed by Duan, Gupta, and 
Sorooshian (1993), Duan, Sorooshian, and Gupta (1994), which has 
proven to be effective for global optimization by many previous 
studies (e.g. Franchini, Galeati, & Berra, 2009; Muttil & Jayawardena, 
2008). Prior value and the range of each parameter used for the SCE 
algorithm are listed in Table S3. Root mean square error (RMSE, 
Equation 19) between simulated (SOCsim_i) and observed (SOCobs_i) 
SOC concentrations (g C/kg soil) was used as the objective function, 
and parameters that minimized the RMSE were regarded as optimal.

where n is the number of observation sites. In addition to RMSE, the 
Akaike information criterion (AIC, Equation 20, Akaike, 1974), which 
considers both the goodness of fit and the number of free model pa-
rameters (nparam), were also used to evaluate the optimized models 
(Table 1).

Our preliminary analyses indicated that parameter optimi-
zations of MIMICS based solely on observed SOC concentration 
might result in unrealistic estimates of SOC composition (e.g. the 
SOCp pool approaching to zero at all sites) and of turnover rates 
(e.g. the SOCp turnover rates being significantly larger than SOCa), 
although the simulated concentrations of total SOC agreed well 
with the observations. To mitigate this problem, some additional 
constraints on simulated SOC composition and turnover rates were 

incorporated into our optimization scheme (see below). Parameter 
sets that did not meet the imposed constraints on SOC compo-
sition and turnover rates were excluded. Note that the simulated 
turnover rates of different SOC pools from CENTURY are always 
consistent with the definition of SOC pools (i.e. the active pool 
has the largest turnover rate, followed by the slow pool, and the 
passive pool has the lowest turnover rate), and the simulated SOC 
composition (mainly determined by the turnover rate of each pool, 
see Section 3.2) did not show any ‘abnormalities’ (i.e. no simulated 
SOC pool declined to very small values approaching zero), so we did 
not incorporate additional constraints when optimizing the param-
eters of CENTURY.

Previous studies suggest that the organic C associated with soil 
minerals or stored within soil aggregates, corresponding to the SOCp 
pool of MIMICS, is the most stable fraction of SOC with turnover 
times approaching hundreds to thousands of years. Furthermore, 
the recalcitrant SOC fractions composed by structurally complex 
compounds corresponding to the SOCc pool of MIMICS gener-
ally have longer turnover time than the labile SOC fraction (Benbi, 
Boparai, & Brar, 2014; Robertson et al., 2019; Sokol, Sanderman, & 
Bradford, 2019). Therefore, we set a constraint that the simulated 
mean SOCp turnover time for all of the 206 observation sites must 
be longer than that of SOCc, and that the mean SOCc turnover time 
must be longer than SOCa.

Observations found that a large fraction (e.g. 10%–50%) of 
SOC is in stable pool (Barré et al., 2010; Benbi et al., 2014; Lützow 
et al., 2007; Viscarra Rossel et al., 2019). To avoid the optimized 
parameters giving a very low (approaching to zero) estimate of the 
fraction of SOCp, we also added as a constraint of model results 
with optimized parameters that the simulated average proportion 
of SOCp at the 206 observation sites (not for every individual site) 
must be larger than 5%, that average proportion of SOCc cannot 
exceed 70%, and that the total amount of SOCp and SOCc should 
be higher than SOCa.

Note that the parameters (a1–5 in Equations 7–10) controlling the 
partition of microbial residues to different SOC pools were modi-
fied before the parameters listed in Table 1 are optimized because 
MIMICS did not give reasonable estimates of the SOC concentra-
tions, compositions and the turnover rates simultaneously when 
only the parameters listed in Table 1 were calibrated. The modified 
values of a1–5 are provided in Table S2.

To explore the sources of simulation errors (i.e. the difference 
between simulated and observed SOC concentrations), we first cal-
culated the partial correlation coefficient between the errors of the 
simulated SOC concentration and different soil (e.g. texture, pH, BS 
and CEC), plant (NDVI and LAI) and climate (temperature, precipi-
tation, ET) variables (see Section 2.1 and Table S1 for the source of 
each variable). Then, we fitted a linear mixed-effects (LME) model 
to quantify the combined contribution of the fixed effects (soil, 
plant and climate variables listed above) and site-specific random 
effects (e.g. soil type, forest type, stand age and micro-topography) 
on explaining the simulation errors. All the important variables that 
might potentially affect SOC dynamics, for example soil texture, 
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temperature, pH, moisture, BS, CEC, bulk density, litterfall inputs, 
precipitation and ET, were included as fixed effects in the LME. 
Observation site was used as a random effect. We also fitted a 
multiple linear regression (MLR) with all of the fixed effects of the 
LME as the predictor variables to quantify the relative contributions 
of fixed effects and random effects to the simulation errors. Then, 
the relative contributions of fixed effects and random effects were 
quantified based on the coefficient of determination of the LME 
(R2

LME
) and MLR (R2

MLR
). The contributions of model choice (fmodel), 

fixed effects (ffixed) and random effects (frandom) to explaining the 
variation of SOC concentrations can be quantified by:

where R2
model

 is the determining coefficient of the regression equation 
between simulated and observed SOC concentrations.

2.4 | Model evaluation against sensitivities of SOC 
concentrations to key model drivers

To assess whether each model simulated the variations of SOC con-
centrations for the right reasons, we first identified the key drivers of 
the spatial variations of SOC concentration, and then compared mod-
elled sensitivities of SOC concentration to these drivers to the values 
derived from the observations. The potential key drivers we evaluated 
include soil temperature, moisture, clay content, litterfall input, the 
mean C:N ratio and the lignin:C ratio of litterfall. The sensitivities of 
organic matter decomposition rate to manipulated soil temperature, 
moisture and litter inputs have been widely investigated via labora-
tory and field experiments (Bonan et al., 2013; Parton et al., 2007; 
Sierra, Trumbore, Davidson, Vicca, & Janssens, 2015). However, no 
experiments have measured the sensitivity of equilibrium SOC stock 
to changing soil properties and litter inputs, as it would take decades 
to hundreds of years for the SOC pool to reach equilibrium after ma-
nipulating litter. Here we estimated the sensitivities by making use of 
observed spatial variation of SOC with different drivers, including soil 
temperature, water content, clay fraction, annual total litter input and 
the C:N ratio and lignin:C ratio of litter input. We assumed the soil–
litter system is in steady state, and the sensitivities of equilibrium SOC 
to different drivers were quantified by multiple linear regression. The 
regression coefficient of each driver was regarded as the observed 
sensitivity.

The sensitivities of simulated SOC concentration to soil and 
litter properties from optimized CENTURY and MIMICS were ob-
tained using Monte Carlo simulations. We sampled 1,000 sets of 
unique soil and litter input condition within the observed space of 
each variable using Latin Hypercube technique (Tang & Zhuang, 

2009). All soil and litter variables were assumed to be uniformly 
distributed and the range of each variable was set based on the 
maximum and minimum observed values at the European and 
Chinese sites. For each combination of soil and litter input condi-
tion, the sensitivity (Si) of SOC concentration to each variable (di) 
was calculated as

where δ is the step size of a change in variable di assumed to be 
1% of the difference between maximum and minimum di (i.e. 
δ = (di_max − di_min)/100).

2.5 | Model evaluation against SOC composition

We evaluated the simulated proportions of the different SOC pools 
using observations from sites that are independent of the European 
and Chinese forest sites, for which the model parameters were cali-
brated. The simulated ratios of microbial biomass to total SOC were 
validated against 655 observations from forest sites around the world 
(Xu, Thornton, & Post, 2013). The simulated SOC composition from 
CENTURY and MIMICS was compared to measurements of SOC com-
position from 505 sites under native forests and grasslands in Australia 
(Viscarra Rossel & Hicks, 2015; Viscarra Rossel et al., 2019). These 
data were partitioned into three fractions, the particulate organic C 
(POC), humic organic C (HOC) and resistant organic C (ROC, which is 
the mineral-associated organic carbon) based on the particle size and 
chemical compositions of organic matter. We acknowledge the fact 
that the observed pools are not modelled conceptual pools and we 
propose a correspondence between both in Table S4. We compared 
the simulated SOC pools to the observed SOC fractions to assess their 
correspondence in terms of their expected/assumed turnover rates.

2.6 | Model evaluation against the key drivers of 
variations in SOC composition

To determine whether the key drivers of variations in SOC com-
position in MIMICS and CENTURY models are consistent with 
the observations, we calculated the partial correlation coefficient 
between fraction of each SOC pool and different model drivers 
using the simulated proportions of different SOC pools by opti-
mized MIMICS and CENTURY models at all of the 206 forest sites 
in Europe and China (Figure S2), and using the observed propor-
tions of different SOC pools at the 505 Australia sites (Viscarra 
Rossel et al., 2019). The key drivers we considered in this analysis 
include soil temperature, moisture, clay fraction, BS, annual lit-
terfall input, litter C:N and lignin:C ratios and the total SOC pool 
size. For each model driver, all of the other drivers described above 
were used as the controlling factor for calculating the partial cor-
relation coefficient.
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3  | RESULTS

3.1 | Evaluation of simulated SOC concentrations

Our evaluation indicates that MIMICS can better capture the ob-
served spatial variation of SOC concentrations than CENTURY 
across European and Chinese forest sites. The default version 
MIMICS-def explains 48% observed SOC spatial variation, as 
compared to only 10% by CENTURY model (Figure 2). MIMICS-D, 
MIMICS-DB and MIMICS-DBT explain 52%, 57% and 59% SOC 
spatial variation, respectively (Figure 2). The RMSE and AIC indi-
cate that all MIMICS versions estimate the spatial variation of SOC 
concentration more accurately than CENTURY, with MIMICS-DBT 
having the best performance overall (Figure 2f). We also note that 
the CENTURY model with five free parameters for tuning turnover 
rates of litter and SOC pools (Figure S5a) does not estimate SOC 
concentrations more accurately than the CENTURY with two free 
parameters (Table 1). CENTURY with five free parameters has a 
slightly smaller RMSE (16.89) but a higher AIC (1,174.7) than the 

RMSE (16.97) and AIC (1,170.5), respectively, from CENTURY with 
two parameters (Figure S5a).

There are systematic biases in the simulated SOC concentra-
tions along the gradients of SOC pool size, soil properties, and cli-
mate and plant variables (Figure 3 and Figure S6). Both CENTURY 
and MIMICS overestimate the low SOC concentrations but un-
derestimate the high concentrations (Figure 2 and Figure S6). The 
simulation biases of CENTURY are significantly correlated with soil 
(e.g. moisture, BS, pH and bulk density), plant (e.g. litterfall, LAI) and 
climate (e.g. mean annual temperature and annual total precipita-
tion) variables (Figure 3), suggesting that CENTURY has structural 
biases in the processes depending upon those factors. Similar to 
CENTURY, the simulation bias of MIMICS is also significantly cor-
related with some soil and litterfall-related variables. By including 
the effect of BS on deprotection rate into MIMICS (MIMICS-DB), 
the significant relationships between simulation biases and soil, 
plant and climate variables are largely eliminated, but a significant 
negative relationship between simulation biases and soil CEC ap-
pears. The significant relationship between simulation biases and 

F I G U R E  2   Comparison of CENTURY (a) and MIMICS (b–e) for simulating large-scale variation of soil organic carbon (SOC) concentrations 
across the 206 forest sites in Europe and China. RMSE (f) is the root mean square error, and AIC (f) is the Akaike information criterion. 
MIMICS versions include the default model (MIMICS-def), revised SOC deprotection rate (MIMICS-D), using base saturation to modify 
deprotection rates (MIMICS-DB); and density-dependent microbial turnover rate (MIMICS-DBT; see Section 2.2.2)
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annual litterfall input can be eliminated only when the density- 
dependence of microbial turnover rate in MIMICS-DBT is repre-
sented. Moreover, the simulation biases of all models are positively 
related to soil bulk density (Figure 3).

Soil properties, litter input rate and the plant and climate con-
ditions together can only explain a small portion of the simulation 
biases in SOC concentrations, especially for MIMICS (Figures S7 
and S8). The linear mixed-effects (LME) models which consider 
both fixed factors (i.e. the soil, litter and climate variables) and 
site-specific random factor (e.g. soil type, forest type, stand age 
and micro-topography) explain most of the variations in the simu-
lation biases (Figure S7). Further statistics indicated that the SOC 
variation explained by CENTURY, fixed factors and random factors 

are 10%, 27% and 54%, respectively (Figure S8). But for MIMICS, 
the model itself explained the largest part (48%–59%) of SOC vari-
ation, followed by the random factor (24%–32%), with fixed factors 
explaining 5%–9% of SOC variation (Figure S8). Our further analy-
sis on the potential contributors to random factors indicated that 
CENTURY estimations of SOC are consistently biased regardless of 
soil type, plant type and stand age (Figure S9). But the estimations 
of SOC made by MIMICS are, with few exceptions, unbiased across 
sites with different soil types, plant types and stand ages. Overall, 
the constraints of soil, litter and climate factors on SOC stocks are 
significantly better represented in MIMICS than in CENTURY.

3.2 | Evaluation of simulated sensitivities of SOC 
concentration to key model drivers

Based on observations, SOC concentrations are sensitive to local soil 
temperature and soil clay content (Figure 4a,c), but are not sensitive 
to local soil moisture or litter quantity and quality (Figure 4b,d,e,f). 
On average, SOC concentration declines by 0.53 g C/kg soil with a 
1°C increase in soil temperature, and increases by 0.37 g C/kg soil 
with a 1% increase in soil clay fraction.

MIMICS models provide more accurate estimates of the observa-
tion-based partial sensitivity of SOC concentration to changes in soil 
temperature, compared to CENTURY (Figure 4a). With a 1°C increase 
in soil temperature, the simulated SOC concentration declines by 0.4–
0.55 g C/kg soil (median value) depending on the version of MIMICS. 
The sensitivity is comparable to the value calculated based on observa-
tion data, but significantly lower than the value simulated by CENTURY 
(−0.92 ± 4.1 g C kg−1 soil °C−1). Both CENTURY and MIMICS underesti-
mate the observed sensitivity of SOC to soil clay fraction. Despite this, 
the sensitivities estimated by MIMICS (0.17–0.26 g C kg−1 soil (clay%)−1) 
are closer to the observed value than CENTURY (0.02 g C kg−1 soil 
(clay%)−1, Figure 4c). In CENTURY or MIMICS, the sensitivities of 
SOC concentration to these variables generally show large variations. 
Overall, SOC simulated by CENTURY is more sensitive to the changes 
in soil condition and litter input than MIMICS.

3.3 | Evaluation of simulated SOC composition

The simulated ratios of microbial biomass (MIC) to total SOC 
stock (MIC/SOC) from the MIMICS models are broadly consistent 
with the observations collected from global forest sites (Xu et al., 
2013), both in terms of mean (or median) value and the range of 
variation (Figure 5). Overall, both observed and simulated MIC/
SOC ranged from 0.005 to approximately 0.05, with a mean value 
of approximately 0.017 (0.015–0.019) and a median value of 0.013 
(0.012–0.014).

MIMICS-simulated fractions of SOC pools are consistent with mea-
surements of the Australian soil samples based on the particle size and 
chemical compositions of organic matter (Table S4), but CENTURY did 
not (Figure 6). Observations at 505 Australian sites indicate that HOC 

F I G U R E  3   Partial correlation coefficients between the biases 
of simulated SOC concentrations and the climate condition, 
amount and quality of litter input, and soil physical and chemical 
properties. MAT: mean annual temperature (°C), MAP: mean annual 
total precipitation (mm), MAP-PET: the difference between annual 
total precipitation and potential evapotranspiration (mm), ET: 
evapotranspiration (mm), LAImax: mean of the annual maximum leaf 
area index at the observation site during the period from 1982 to 
2000, LAItrend: change trend of the LAImax during the period from 
1982 to 2000 (year−1), NDVImax: mean of the annual maximum 
normalized difference vegetation index at the observation site 
during the period from 1982 to 2000, LAItrend: change trend of 
the NDVImax during the period from 1982 to 2000 (year−1), litterab: 
aboveground litter-C stock (g C/m2), SWC: soil water content, 
BD: bulk density (g/cm3), BS: base saturation (0–1, dimensionless), 
CEC: Cation of exchange capacity (cmol/kg). Partial correlation 
coefficients between −0.14 and 0.14 were not significant (p > .05) 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(46%–60%) accounts for the largest proportion of SOC, followed by the 
most stable pool ROC (25%–33%). The labile pool POC makes up a small 
fraction (12%–23%) of total SOC (Figure 6a). MIMICS predicts a similar 

composition of SOC pools. The moderately stable pool (SOCc) accounts 
for the largest proportion of total SOC, followed by the most stable pool 
protected by the mineral matrix (SOCp) and the available pool (SOCa, 
Figure 6c). SOC composition simulated by CENTURY can be very differ-
ent depending on the optimized turnover rates of the active, slow and 
passive SOC pools (Figure 6b and Figure S5b). Increasing turnover rate of 
a specific SOC pool generally results in a smaller proportion of this pool 
compared to the total SOC (if the turnover rates of other SOC pools are 
assumed to be fixed).

3.4 | Key drivers of the variation in SOC 
composition

The key factors controlling the simulated SOC composition in 
CENTURY and MIMICS are different from the observations (Figure 7). 
Based on observation data, soil moisture, clay fraction, BS and litter 
input show significant empirical correlations with SOC composition, 
whereas soil temperature shows no significant correlation. In both 
CENTURY and MIMICS, soil temperature strongly affects SOC com-
position. Higher temperature however decreases the ‘stable’ SOC 
fraction (SOCpas) in CENTURY, but increases the stable fraction (SOCp) 
in MIMICS. MIMICS can represent the impacts of litter input on SOC 
composition, but CENTURY does not. Similar to the observations, 
higher litter input rate increases the proportion of the stable SOC 
pools (ROC and SOCp) but decreases the proportion of moderately 

F I G U R E  4   Sensitivity of simulated 
soil organic carbon (SOC) concentration 
to mean annual temperature (SMAT, a), 
soil water content (SSWC, b), soil clay 
fraction (Sclay, c), annual litterfall input 
(Slitterfall, d), the C:N ratio of litterfall 
(SC:N, e) and the lignin:C ratio of litterfall 
(Slignin:C, f). The blue and red dashed 
lines denote insignificant and significant 
(p < .05) sensitivity calculated based on 
observation data, respectively. The solid 
line in each box denotes the median 
value. Box boundaries show the 25th 
and 75th percentiles, whiskers denote 
the 10th and 90th percentiles, and the 
black dots denote the 5th and 95th 
percentiles [Colour figure can be viewed 
at wileyonlinelibrary.com]

F I G U R E  5   Comparison between the simulated ratio of microbial 
C (MIC) to total soil organic carbon (SOC) from different versions 
of MIMICS and the observed values at globally distributed forest 
sites. The dashed and solid lines in each box are the mean and 
median value, respectively. Box boundaries show the 25th and 
75th percentiles, whiskers denote the 10th and 90th percentiles, 
the dots below and above each box denote the 5th and 95th 
percentiles, respectively. The 655 samples of observed MIC/SOC at 
globally distributed forest sites are collected by Xu et al. (2013)

www.wileyonlinelibrary.com
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stable pools (HOC and SOCc). The simulated decreasing trend of la-
bile SOC (SOCa) with increasing litter input is contrary to the observa-
tion (POC). In MIMICS-DB and MIMICS-DBT, soil chemical properties 
represented by BS also show strong impact on SOC composition. 
Moreover, SOC composition also changes with the pool size of total 
SOC. It is necessary to note that the partial correlation coefficients 
might not be able to fully represent the relationships between SOC 
composition and soil and litter variables (Figure 7), as SOC composi-
tion might not be linearly related to these variables (Figure S10).

4  | DISCUSSION

Using in situ observations of SOC, litterfall and soil properties from 
206 forest sites in Europe and China, we compared the performance of 
a first-order soil biogeochemical model (CENTURY) and four different 
versions of the microbial trait-based model (MIMICS) for simulating 
the large-scale spatial variation of SOC concentrations, the sensitivity 

of SOC concentration to key model drivers and the SOC composition. 
Our evaluation provides strong evidence that soil biogeochemical 
models with explicit microbial processes can be applied to simulate 
the large-scale SOC dynamics across different soil, vegetation and cli-
mate conditions. Below, we discuss in detail the implications of these 
results, uncertainties associated with the analysis, and an outlook for 
future data and model needs.

4.1 | Implications of simulation results

4.1.1 | Decomposition model should be 
calibrated and evaluated comprehensively

This study reveals the necessity to calibrate and evaluate MIMICS 
comprehensively. Preliminary parameter estimates for this study 

F I G U R E  6   Comparison between the simulated soil organic 
carbon (SOC) compositions from optimized MIMICS (a) and 
CENTURY (b) model and the observed SOC compositions at  
505 sites in Australia (c). The observation data in Australia are  
obtained from Viscarra Rossel et al. (2019). Viscarra-Rossel et al. 
partitioned total SOC into three fractions with different particle 
sizes: the particulate organic carbon (POC), the humic organic 
carbon (HOC) and the resistant organic carbon (ROC, which  
is the mineral-associated organic carbon). The line in each box 
denotes median value. Box boundaries show the 25th and 75th 
percentiles, whiskers denote the 10th and 90th percentiles, and 
the dots below and above each box denote the 5th and 95th 
percentiles [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  7   Partial correlation coefficients between fraction 
of each SOC pool and model drivers, including mean annual 
temperature (MAT, °C), soil water content (SWC, dimensionless), soil 
clay content (clay, dimensionless), annual total litterfall production 
(Litterfall, g C m−2 year−1), litter C:N ratio (C:N), litter lignin:C ratio 
(Lignin:C), base saturation (BS, 0–1, dimensionless) and total SOC 
concentration (SOC), Figure (a) Obs show the results based on 
observation data from Australia. Figure (b)–(f) showed the results 
based on optimized CENTURY and MIMICS models. Partial 
correlation coefficients between −0.14 and 0.14 were not significant 
(p > .05) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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showed that although parameters optimized based solely on ob-
served SOC concentrations can accurately estimate total SOC 
stocks; they may not be able to estimate SOC composition and 
turnover time. To avoid unreasonable estimates of SOC composition 
(e.g. SOCp of MIMICS calibrated only against the SOC concentra-
tions at European and China forest sits always approaches to zero) 
and C turnover times, we imposed additional constraints to restrict 
the ranges of proportions and turnover times of MIMICS SOC pools 
(see Section 2.3). Our results highlight the need for comparing model 
results with total SOC and microbial biomass, SOC composition and 
turnover time, as well as the response of SOC to changed climate, 
litter input and soil properties with a wide range of observations. 
Moreover, the optimized parameter values of both CENTURY and 
MIMICS in this study (Table S3) are different from the default values 
calibrated against manipulated decomposition experiments (Parton 
et al., 1987; Wieder et al., 2015), suggesting that model parameters 
obtained based on local decomposition experiments might not work 
well at large spatial scales.

4.1.2 | Importance of explicitly representing 
microbial dynamics in decomposition model

Explicit representation of microbial biomass and substrate-limited 
growth rates is important for soil biogeochemical models to accu-
rately capture the observed SOC concentration variations and the 
responses of SOC to climate changes (Campbell & Paustian, 2015; 
Wieder, Grandy, et al., 2014). In our research, simulations of SOC 
concentration at forest sites using MIMICS were more accurate 
and parsimonious compared to using CENTURY (Figure 2), and 
MIMICS better capture the observed sensitivities of SOC concen-
trations to temperature and soil clay than CENTURY. Conventional 
first-order models do not explicitly simulate microbial activity, 
but instead strongly emphasizes the relationship between litter 
chemical recalcitrance and soil C stock (Jenkinson & Rayner, 1977; 
Parton et al., 1987; Wieder, Grandy, et al., 2014). Recent analyti-
cal and experimental advances have demonstrated that molecular 
structure alone does not control SOC stability. Rather, microbial 
products of decomposition are the main precursors of stable SOC 
(Cotrufo et al., 2013; Kallenbach, Frey, & Grandy, 2016), suggest-
ing that, in fact, environmental and biological controls predomi-
nate (Lehmann & Kleber, 2015; Lützow et al., 2006; Schmidt et al., 
2011).

4.1.3 | Impacts of soil physiochemical properties on 
SOC decomposition and stabilization

Besides microbial dynamics, it is also necessary to accurately 
represent the effects of soil physiochemical properties on SOC 
dynamics in soil biogeochemical models, especially for the forma-
tion and release of SOC protected by the mineral matrix. It has 
been widely recognized that soil clay fractions can influence SOC 

stock and stabilization by promoting the sorption of organic C to 
mineral surfaces and entrapment into micropores (Schimel et al., 
1994; Wagner, Cattle, & Scholten, 2007). CENTURY uses the soil 
clay fraction to modify the decomposition rate of the active SOC 
pool and the C transfer from active to slow pool (Parton et al., 
1987). As the active pool generally accounts for only a small frac-
tion (c. 3.5%) of total SOC (Figure 6b), this might explain why the 
sensitivity of SOC concentration to soil clay content in CENTURY 
is drastically underestimated compared to the observation-based 
sensitivity (Figure 4c). In MIMICS, soil clay influences both the 
decomposition rate of available SOC pool and the deprotection 
rate of protected by the mineral matrix. MIMICS thus better rep-
resents current understanding of SOC stabilization processes and 
appears to more accurately estimate the sensitivity of SOC to soil 
clay fraction than CENTURY (Figure 4c).

Numerous experimental studies also reported the significant im-
pacts of soil chemical properties such as pH, exchangeable cations 
(e.g. Ca2+) and extractable metals (e.g. iron- and aluminium-oxyhy-
droxides) on SOC dynamics (Doetterl et al., 2015; Rasmussen et al., 
2018; Six et al., 2004; Viscarra Rossel et al., 2019), and the relative 
importance of these factors likely varies across scales and eco-
systems (Jobbágy & Jackson, 2000; Schmidt et al., 2011; Viscarra 
Rossel et al., 2019). Indeed, representing the diversity of mecha-
nisms by which the soil physicochemical environment influences 
the persistence of soil organic matter in numerically tractable ways 
remains an outstanding challenge in models (Bailey et al., 2018). Our 
work suggests one opportunity to use BS as a proxy variable that 
can modify C deprotection rates from the SOCp pool in MIMICS 
(MIMICS-DB). This modification significantly decreased the biases in 
simulated SOC concentrations (Figure 2) and eliminated the system-
atic estimation biases along gradients of soil pH, clay content and an-
nual precipitation at the observation sites (Figure 3). Moreover, our 
analysis on the relative contributions of model choice, fixed effects 
and site-specific random effects to explaining the SOC variation 
(Figure S8) reveals that the constraints of soil physical (e.g. tempera-
ture and clay content) and chemical (e.g. BS) properties on SOC dy-
namics has been better represented in MIMICS than in CENTURY, 
as the fixed effects including all potentially important soil variables 
can only explain a small part of the simulation errors of MIMICS, 
but a considerable part (~30%) of the simulation errors of CENTURY 
(Figures S7 and S8).

4.1.4 | Impacts of litter inputs on SOC 
decomposition and stabilization

First-order models like CENTURY assume a linear relationship with 
productivity and soil C stocks (Todd-Brown et al., 2013), and the 
same is true for default parameterizations of MIMICS. Our analysis 
shows that the simulated SOC concentrations from CENTURY and 
MIMICS models are systematically biased from observations along 
the gradients of local litterfall production, except for the MIMICS-
DBT which considers the density-dependent turnover of microbes 
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(Figure 3). This suggests that at the community level, regulatory 
mechanisms like competition, space constraints and other controls 
that depend on the density of individuals (such as disease and pro-
duction of toxins) may limit microbial population sizes (Hibbing, 
Fuqua, Parsek, & Peterson, 2010; Kaiser, Franklin, Dieckmann, & 
Richter, 2014; Kaiser, Franklin, Richter, & Dieckmann, 2015). Indeed, 
a recent study from Georgiou et al. (2017) indicated that the density- 
dependent microbial processes can play an essential, but often 
overlooked role in regulating SOC dynamics. We recognize that the 
parameterization of density-dependent turnover implemented in 
MIMCS-DBT simplifies the complex community interactions that 
occur in soils, but they represent a tractable means for capturing 
the emergent dynamics in models that are intended for global-scale 
application and projections.

Litter input is not as important as soil physicochemical proper-
ties for predicting total SOC stock (Figure 4d), but it nevertheless 
strongly affects SOC composition (Figure 7), which determines the 
vulnerability of SOC (i.e. risk of C loss) to perturbations such as 
climate change and human disturbances. Litter quality can impact 
microbial C use efficiency and short-term SOC dynamics (Manzoni 
et al., 2017; Zhang et al., 2018), but evidence is inclusive on the sig-
nificant role of litter quality in long-term SOC dynamics (Gentile, 
Vanlauwe, & Six, 2011; Helfrich, Ludwig, Potthoff, & Flessa, 2008). 
The effect of litter quality on SOC stabilization is mostly modulated 
by the extent of soil C saturation, and it may alter SOC stocks only 
when there is a saturation deficit (Castellano, Mueller, Olk, Sawyer, 
& Six, 2015). Consistent with our results (Figure 7), previous stud-
ies also reported that litter quantity rather than quality is one of 
the main determinants of SOC stability (Carrington, Hernes, Dyda, 
Plante, & Six, 2012; Dungait, Hopkins, Gregory, & Whitmore, 2012). 
Experiments by Wang, He, and Liu (2016) suggested that the ratio 
between different SOC fractions is related to microbial biomass and 
community composition (which depends on the amounts of litter in-
puts), but not to litter chemical composition.

4.2 | Uncertainties in this study

Some uncertainties in our simulation results may be caused by 
biases of forcing and validation data. In this study, we assumed 
the forest and soil C at all observation sites are at equilibrium. 
However, even though most observation sites have a stand age 
older than 40 years and have not been strongly disturbed by fire 
or human activities (e.g. reforestation and deforestation can in-
duce a 30% change in soil C stock, Don, Schumacher, & Freibauer, 
2011), the forest systems at some sites may not be at equilibrium, 
especially under the background of global climate change. Some 
uncertainties also arise due to lack of observations. Specifically, 
the wood and root litterfall at European sites have not been 
measured and Chinese observation data only provide measure-
ments of plant biomass but not litterfall, so we have adopted the 
leaf turnover rates and ratios of wood litter and root litter to leaf 
litter from databases of plant traits and litterfall production to 

calculate the total litterfall production at each observation site 
(see Section 2.1). Moreover, most of the litter C:N ratios and the 
lignin:C ratios were obtained from previously compiled litterfall 
databases and publications and not from site-level observations, 
Thus, biases and uncertainties that exist in the litter input data 
are poorly quantified.

Additional uncertainties are related to model structural as-
sumptions and parameterizations. Specifically, soil moisture has 
been widely regarded as one of the primary physical factors that 
control microbial activity (Arnold, Ghezzehei, & Berhe, 2015; 
Ghezzehei, Sulman, Arnold, Bogie, & Berhe, 2019; Manzoni, 
Moyano, Kätterer, & Schimel, 2016); however, the soil moisture 
control over microbial dynamics is not used in the current param-
eterization of MIMICS. Soil structure (characterized by porosity or 
bulk density) determines soil O2 availability and the accessibility of 
C particles to microbes (Davidson, Samanta, Caramori, & Savage, 
2012; Lützow et al., 2006). Soil nutrient availability (e.g. mineral 
nitrogen and phosphorus) strongly affects microbial C use effi-
ciency and growth rate (Manzoni et al., 2017). Again, soil moisture, 
structure and nutrient availability have not been considered in this 
implement MIMICS. Finally, neither of the models considered here 
implement vertically resolved soil biogeochemistry, which are 
clearly important to capture soils with strong vertical profiles or 
vertical perturbations such as in permafrost C (Koven, Lawrence, & 
Riley, 2015; McGuire et al., 2018). The insufficient representation 
of interactions between soil physicochemical properties, nutrient 
availability, microbial dynamics and SOC stabilization therefore 
may induce additional uncertainties in our results. We appreciate 
that these additional complexities in model form also generates 
greater data demands to appropriately parameterize and evaluate 
models, but may be necessary to build confidence in soil carbon 
projections (Bradford et al., 2016).

4.3 | Outlooks and challenges

A study by Wieder, Grandy, et al. (2014) demonstrated that MIMICS 
could capture the observed temporal decreasing trends of litter and 
SOC stocks in field decomposition experiments. Our evaluation fur-
ther demonstrates that MIMICS can simulate SOC stock and compo-
sition across ecosystems with different climate, and soil and forest 
types. MIMICS also represents the SOC decomposition and stabi-
lization processes more realistically (e.g. explicitly represents mi-
crobial dynamics) than conventional first-order models. Therefore, 
MIMICS can be used to replace the conventional decomposition 
models used in existing ESMs.

The parameters, structure and algorithms of MIMICS can still 
be improved. We encourage future studies to assess the global ap-
plicability of MIMICS or similar models based on more integrated 
in situ observations on plant biomass, litterfall (both aboveground 
and belowground), SOC stock and composition, soil physicochem-
ical properties and local climate from more ecosystems, in partic-
ular observations from grasslands and tropical forests. We also 
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encourage more studies to quantify the interactions between soil 
physicochemical properties, microbial dynamics and the stabiliza-
tion of SOC. In this study, the MIMICS model considering the phys-
icochemical constraints of soil properties on SOC deprotection rate 
and microbe turnover more accurately estimated SOC concentra-
tion than the default model (Figure 2). But the empirical functions 
(Equations 13 and 14) used to represent physicochemical constraints 
were built empirically based on analysis of the biases of simulated 
SOC concentration from the default version of MIMICS (Figure 3). 
More experiments investigating influences of soil physicochemical 
properties on microbial activity and the C adsorption/desorption 
rate of mineral soil are needed to improve these empirical functions. 
Furthermore, many soil properties are significantly correlated (e.g. 
Figure S12) and the changes in litter inputs and SOC contents can in 
return dramatically alter soil physical, chemical and biological prop-
erties (Murphy, 2015; Schmidt et al., 2011). Thus, research focusing 
on the interactions between litter, SOC and different soil properties 
is also essential.

ACKNOWLEDG EMENTS
HZ, DSG, PC, YPW, RA, YH and BG acknowledge the IMBALANCE-P 
project of the European Research Council (ERC-2013-SyG-610028). 
HZ acknowledges the ‘Lateral-CNP' project (No. 34823748) of the 
Fonds de la Recherche Scientifique –FNRS. YPW acknowledge the 
financial support by the National Environmental Science Program 
Earth System and Climate Change. WRW is supported by the U.S. 
Department of Energy under award number BSS DE-SC0016364, 
US Department of Agriculture NIFA 2015-67003-23485, and NASA 
Interdisciplinary Science Program award number NNX17AK19G. We 
acknowledge the contribution of Shijie Han, Sheng Du, Shenggong 
Li, Keping Ma, Junhua Yan, Youxin Ma and Genxu Wang from the 
Chinese Academy of Sciences to collecting the Chinese observa-
tion data. We also acknowledge the collection of data by partners 
of the official UNECE ICP Forests Network (http://icp-fores ts.net/
contr ibutors). Part of the data was co-financed by the European 
Commission (Data achieved at 23/04/2018).

DATA AVAIL ABILIT Y S TATEMENT
The European ICP forest data can always be requested from the 
Programme Co-ordinating Centre (http://icp-fores ts.net/page/data-
requests) of ICP Forests in Eberswalde, Germany. The Chinese for-
est data can be obtained by contacting the Prof. Tang X (xltang@scib.
ac.cn) in South China Botanical Garden, Chinese Academy of Sciences, 
Guangzhou, China. All of the other databases of soil, climate, litterfall 
and vegetation are publicly accessible, and the specific references and 
links to these databases are provided in Section 2.1.

ORCID
Haicheng Zhang  https://orcid.org/0000-0002-9313-5953 
William R. Wieder  https://orcid.org/0000-0001-7116-1985 
Bertrand Guenet  https://orcid.org/0000-0002-4311-8645 
Raphael A. Viscarra Rossel  https://orcid.org/0000-0003-1540-4748 
Guoyi Zhou  https://orcid.org/0000-0002-5667-7411 

R E FE R E N C E S
Abramoff, R. Z., Torn, M. S., Georgiou, K., Tang, J., & Riley, W. J. (2019). 

Soil organic matter temperature sensitivity cannot be directly in-
ferred from spatial gradients. Global Biogeochemical Cycles, 33(6), 
761–776. https ://doi.org/10.1029/2018g b006001

Abramoff, R., Xu, X., Hartman, M., O’Brien, S., Feng, W., Davidson, E., 
… Mayes, M. A. (2018). The Millennial model: In search of mea-
surable pools and transformations for modeling soil carbon in the 
new century. Biogeochemistry, 137, 51–71. https ://doi.org/10.1007/
s10533-017-0409-7

Akaike, H. (1974). A new look at the statistical model identification. IEEE 
Transactions on Automatic Control, 19, 716–723. https ://doi.org/10. 
1109/TAC.1974.1100705

Allison, S. D. (2012). A trait-based approach for modelling microbial 
litter decomposition. Ecology Letters, 15, 1058–1070. https ://doi.
org/10.1111/j.1461-0248.2012.01807.x

Allison, S. D., Wallenstein, M. D., & Bradford, M. A. (2010). Soil-carbon 
response to warming dependent on microbial physiology. Nature 
Geoscience, 3, 336–340. https ://doi.org/10.1038/ngeo846

Arnold, C., Ghezzehei, T. A., & Berhe, A. A. (2015). Decomposition of 
distinct organic matter pools is regulated by moisture status in struc-
tured wetland soils. Soil Biology and Biochemistry, 81, 28–37. https ://
doi.org/10.1016/j.soilb io.2014.10.029

Bailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C. 
V., Heckman, K., … Wallenstein, M. D. (2018). Soil carbon cycling prox-
ies: Understanding their critical role in predicting climate change feed-
backs. Global Change Biology, 24, 895–905. https ://doi.org/10.1111/
gcb.13926 

Barré, P., Eglin, T., Christensen, B. T., Ciais, P., Houot, S., Kätterer, T., … 
Chenu, C. (2010). Quantifying and isolating stable soil organic carbon 
using long-term bare fallow experiments. Biogeosciences, 7, 3839–
3850. https ://doi.org/10.5194/bg-7-3839-2010

Benbi, D. K., Boparai, A. K., & Brar, K. (2014). Decomposition of particu-
late organic matter is more sensitive to temperature than the mineral 
associated organic matter. Soil Biology and Biochemistry, 70, 183–192. 
https ://doi.org/10.1016/j.soilb io.2013.12.032

Bonan, G. B., Hartman, M. D., Parton, W. J., & Wieder, W. R. (2013). 
Evaluating litter decomposition in earth system models with long-
term litterbag experiments: An example using the Community Land 
Model version 4 (CLM4). Global Change Biology, 19, 957–974. https ://
doi.org/10.1111/gcb.12031 

Bradford, M. A., Wieder, W. R., Bonan, G. B., Fierer, N., Raymond, P. A., 
& Crowther, T. W. (2016). Managing uncertainty in soil carbon feed-
backs to climate change. Nature Climate Change, 6, 751–758. https ://
doi.org/10.1038/nclim ate3071

Campbell, E. E., Parton, W. J., Soong, J. L., Paustian, K., Hobbs, N. T., & 
Cotrufo, M. F. (2016). Using litter chemistry controls on microbial pro-
cesses to partition litter carbon fluxes with the Litter Decomposition 
and Leaching (LIDEL) model. Soil Biology and Biochemistry, 100, 160–
174. https ://doi.org/10.1016/j.soilb io.2016.06.007

Campbell, E. E., & Paustian, K. (2015). Current developments in soil 
organic matter modeling and the expansion of model applications: 
A review. Environmental Research Letters, 10, 123004. https ://doi.
org/10.1088/1748-9326/10/12/123004

Carrington, E. M., Hernes, P. J., Dyda, R. Y., Plante, A. F., & Six, J. (2012). 
Biochemical changes across a carbon saturation gradient: Lignin, 
cutin, and suberin decomposition and stabilization in fractionated 
carbon pools. Soil Biology and Biochemistry, 47, 179–190. https ://doi.
org/10.1016/j.soilb io.2011.12.024

Castellano, M. J., Mueller, K. E., Olk, D. C., Sawyer, J. E., & Six, J. (2015). 
Integrating plant litter quality, soil organic matter stabilization, and 
the carbon saturation concept. Global Change Biology, 21, 3200–
3209. https ://doi.org/10.1111/gcb.12982 

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., … 
Thornton, P. (2013). Carbon and other biogeochemical cycles. 

http://icp-forests.net/contributors
http://icp-forests.net/contributors
http://icp-forests.net/page/data-requests
http://icp-forests.net/page/data-requests
mailto:xltang@scib.ac.cn
mailto:xltang@scib.ac.cn
https://orcid.org/0000-0002-9313-5953
https://orcid.org/0000-0002-9313-5953
https://orcid.org/0000-0001-7116-1985
https://orcid.org/0000-0001-7116-1985
https://orcid.org/0000-0002-4311-8645
https://orcid.org/0000-0002-4311-8645
https://orcid.org/0000-0003-1540-4748
https://orcid.org/0000-0003-1540-4748
https://orcid.org/0000-0002-5667-7411
https://orcid.org/0000-0002-5667-7411
https://doi.org/10.1029/2018gb006001
https://doi.org/10.1007/s10533-017-0409-7
https://doi.org/10.1007/s10533-017-0409-7
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1111/j.1461-0248.2012.01807.x
https://doi.org/10.1111/j.1461-0248.2012.01807.x
https://doi.org/10.1038/ngeo846
https://doi.org/10.1016/j.soilbio.2014.10.029
https://doi.org/10.1016/j.soilbio.2014.10.029
https://doi.org/10.1111/gcb.13926
https://doi.org/10.1111/gcb.13926
https://doi.org/10.5194/bg-7-3839-2010
https://doi.org/10.1016/j.soilbio.2013.12.032
https://doi.org/10.1111/gcb.12031
https://doi.org/10.1111/gcb.12031
https://doi.org/10.1038/nclimate3071
https://doi.org/10.1038/nclimate3071
https://doi.org/10.1016/j.soilbio.2016.06.007
https://doi.org/10.1088/1748-9326/10/12/123004
https://doi.org/10.1088/1748-9326/10/12/123004
https://doi.org/10.1016/j.soilbio.2011.12.024
https://doi.org/10.1016/j.soilbio.2011.12.024
https://doi.org/10.1111/gcb.12982


     |  2683ZHANG et Al.

In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. 
Boschung, … P. M. Midgley (Eds.), Climate change 2013: The physical 
science basis. contribution of working group I to the fifth assessment 
report of the Intergovernmental Panel on Climate Change (pp. 465–
570). Cambridge, United Kingdom and New York, NY: Cambridge 
University Press.

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). 
The Microbial Efficiency-Matrix Stabilization (MEMS) framework in-
tegrates plant litter decomposition with soil organic matter stabili-
zation: Do labile plant inputs form stable soil organic matter? Global 
Change Biology, 19, 988–995. https ://doi.org/10.1111/gcb.12113 

Creamer, C. A., de Menezes, A. B., Krull, E. S., Sanderman, J., Newton-
Walters, R., & Farrell, M. (2015). Microbial community structure 
mediates response of soil C decomposition to litter addition and 
warming. Soil Biology and Biochemistry, 80, 175–188. https ://doi.
org/10.1016/j.soilb io.2014.10.008

Dai, Y., Shangguan, W., Wang, D., Wei, N., Xin, Q., Yuan, H., … Yan, F. 
(2018). A review on the global soil datasets for earth system model-
ing. SOIL Discussions, 1–30.

Davidson, E. A., Samanta, S., Caramori, S. S., & Savage, K. (2012). The Dual 
Arrhenius and Michaelis-Menten kinetics model for decomposition of soil 
organic matter at hourly to seasonal time scales. Global Change Biology, 
18, 371–384. https ://doi.org/10.1111/j.1365-2486.2011.02546.x

Doetterl, S., Stevens, A., Six, J., Merckx, R., Van Oost, K., Casanova Pinto, 
M., … Boeckx, P. (2015). Soil carbon storage controlled by interac-
tions between geochemistry and climate. Nature Geoscience, 8, 780–
783. https ://doi.org/10.1038/ngeo2516

Don, A., Schumacher, J., & Freibauer, A. (2011). Impact of tropical land-use change 
on soil organic carbon stocks – A meta-analysis. Global Change Biology, 17, 
1658–1670. https ://doi.org/10.1111/j.1365-2486.2010.02336.x

Duan, Q., Gupta, V., & Sorooshian, S. (1993). Shuffled complex evolu-
tion approach for effective and efficient global minimization. Journal 
of Optimization Theory and Its Applications, 76, 501–521. https ://doi.
org/10.1007/BF009 39380 

Duan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the 
SCE-UA global optimization method for calibrating watershed mod-
els. Journal of Hydrology, 158, 265–284. https ://doi.org/10.1016/ 
0022-1694(94)90057-4

Dungait, J. A. J., Hopkins, D. W., Gregory, A. S., & Whitmore, A. P. (2012). Soil 
organic matter turnover is governed by accessibility not recalcitrance. 
Global Change Biology, 18, 1781–1796. https ://doi.org/10.1111/j.1365- 
2486.2012.02665.x

Elliott, E. T., Paustian, K., & Frey, S. D. (1996). Modeling the measurable or 
measuring the modelable: A hierarchical approach to isolating meaningful 
soil organic matter fractionations. In D. S. Powlson, P. Smith, & J. U. Smith 
(Eds.), Evaluation of soil organic matter models. NATO ASI Series (Series I: 
Global Environmental Change) (Vol. 38). Berlin, Heidelberg: Springer.

FAO/IIASA/ISRIC/ISSCAS/JRC. (2012). Harmonized world soil database 
(version 1.2). Rome, Italy Laxenburg, Austria: FAO and IIASA.

Fleck, S., Cools, N., De Vos, B., Meesenburg, H., & Fisher, R. (2016). The 
Level II aggregated forest soil condition database links soil physi-
cochemical and hydraulic properties with long-term observations 
of forest condition in Europe. Annals of Forest Science, 73, 945–957. 
https ://doi.org/10.1007/s13595-016-0571-4

Fontaine, S., Barot, S., Barré, P., Bdioui, N., Mary, B., & Rumpel, C. (2007). 
Stability of organic carbon in deep soil layers controlled by fresh car-
bon supply. Nature, 450, 277–280. https ://doi.org/10.1038/natur e 
06275

Franchini, M., Galeati, G., & Berra, S. (2009). Global optimization techniques 
for the calibration of conceptual rainfall-runoff models. Hydrological 
Sciences Journal, 43, 443–458. https ://doi.org/10.1080/02626 66980 
9492137

Gentile, R., Vanlauwe, B., & Six, J. (2011). Litter quality impacts short- but 
not long-term soil carbon dynamics in soil aggregate fractions. Ecological 
Applications, 21, 695–703. https ://doi.org/10.1890/09-2325.1

Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J., & Torn, M. S. (2017). 
Microbial community-level regulation explains soil carbon responses 
to long-term litter manipulations. Nature Communications, 8, 1223. 
https ://doi.org/10.1038/s41467-017-01116-z

Ghezzehei, T. A., Sulman, B., Arnold, C. L., Bogie, N. A., & Berhe, A. A. 
(2019). On the role of soil water retention characteristic on aerobic 
microbial respiration. Biogeosciences, 16, 1187–1209. https ://doi.
org/10.5194/bg-16-1187-2019

Guenet, B., Danger, M., Abbadie, L., & Lacroix, G. (2010). Priming effect: 
Bridging the gap between terrestrial and aquatic ecology. Ecology, 91, 
2850–2861. https ://doi.org/10.1890/09-1968.1

Hararuk, O., & Luo, Y. (2014). Improvement of global litter turnover rate 
predictions using a Bayesian MCMC approach. Ecosphere, 5, art163. 
https ://doi.org/10.1890/ES14-00092.1

Harmon, M. E., Silver, W. L., Fasth, B., Chen, H. U. A., Burke, I. C., 
Parton, W. J., … Currie, W. S. (2009). Long-term patterns of mass 
loss during the decomposition of leaf and fine root litter: An inter-
site comparison. Global Change Biology, 15, 1320–1338. https ://doi.
org/10.1111/j.1365-2486.2008.01837.x

Heimann, M., & Reichstein, M. (2008). Terrestrial ecosystem carbon 
dynamics and climate feedbacks. Nature, 451, 289–292. https ://doi.
org/10.1038/natur e06591

Helfrich, M., Ludwig, B., Potthoff, M., & Flessa, H. (2008). Effect of litter 
quality and soil fungi on macroaggregate dynamics and associated par-
titioning of litter carbon and nitrogen. Soil Biology and Biochemistry, 40, 
1823–1835. https ://doi.org/10.1016/j.soilb io.2008.03.006

Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial 
competition: Surviving and thriving in the microbial jungle. Nature 
Reviews Microbiology, 8, 15–25. https ://doi.org/10.1038/nrmic ro2259

Holland, E. A., Post, W. M., Matthews, E., Sulzman, J., Staufer, R., & 
Krankina, O. (2015). A global database of litterfall mass and litter 
pool carbon and nutrients. Data set. Retrieved from http://daac.ornl.
gov from Oak Ridge National Laboratory Distributed Active Archive 
Center. In, Oak Ridge, Tennessee, USA.

Huang, Y., Guenet, B., Ciais, P., Janssens, I. A., Soong, J. L., Wang, Y., … 
Huang, Y. (2018). ORCHIMIC (v1.0), A microbe-driven model for soil 
organic matter decomposition designed for large-scale applications. 
Geoscientific Model Development, 11, 2111–2138.

Iversen, C. M., McCormack, M. L., Powell, A. S., Blackwood, C. B., 
Freschet, G. T., Kattge, J., … Violle, C. (2017). A global Fine-Root 
Ecology Database to address below-ground challenges in plant ecol-
ogy. New Phytologist, 215, 15–26. https ://doi.org/10.1111/nph.14486 

Jenkinson, D., & Rayner, J. (1977). The turnover of soil organic matter 
in some of the Rothamsted classical experiments. Soil Science, 123, 
298–305. https ://doi.org/10.1097/00010 694-19770 5000-00005 

Jia, B., Zhou, G., & Xu, Z. (2016). Forest litterfall and its composition: A 
new data set of observational data from China. Ecology, 97, 1365. 
https ://doi.org/10.1890/15-1604.1

Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil organic 
carbon and its relation to climate and vegetation. Ecological Applications, 
10, 423–436. https ://doi.org/10.1890/1051-0761(2000)010[0423:T-
VDOS O]2.0.CO;2

Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, 
M. L., … Zhang, K. (2010). Recent decline in the global land evapo-
transpiration trend due to limited moisture supply. Nature, 467, 951–
954. https ://doi.org/10.1038/natur e09396

Kaiser, C., Franklin, O., Dieckmann, U., & Richter, A. (2014). Microbial com-
munity dynamics alleviate stoichiometric constraints during litter decay. 
Ecology Letters, 17, 680–690. https ://doi.org/10.1111/ele.12269 

Kaiser, C., Franklin, O., Richter, A., & Dieckmann, U. (2015). Social dy-
namics within decomposer communities lead to nitrogen retention 
and organic matter build-up in soils. Nature Communications, 6, 8960. 
https ://doi.org/10.1038/ncomm s9960 

Kallenbach, C., Frey, S., & Grandy, S. (2016). Direct evidence for microbial- 
derived soil organic matter formation and its ecophysiological 

https://doi.org/10.1111/gcb.12113
https://doi.org/10.1016/j.soilbio.2014.10.008
https://doi.org/10.1016/j.soilbio.2014.10.008
https://doi.org/10.1111/j.1365-2486.2011.02546.x
https://doi.org/10.1038/ngeo2516
https://doi.org/10.1111/j.1365-2486.2010.02336.x
https://doi.org/10.1007/BF00939380
https://doi.org/10.1007/BF00939380
https://doi.org/10.1016/0022-1694(94)90057-4
https://doi.org/10.1016/0022-1694(94)90057-4
https://doi.org/10.1111/j.1365-2486.2012.02665.x
https://doi.org/10.1111/j.1365-2486.2012.02665.x
https://doi.org/10.1007/s13595-016-0571-4
https://doi.org/10.1038/nature06275
https://doi.org/10.1038/nature06275
https://doi.org/10.1080/02626669809492137
https://doi.org/10.1080/02626669809492137
https://doi.org/10.1890/09-2325.1
https://doi.org/10.1038/s41467-017-01116-z
https://doi.org/10.5194/bg-16-1187-2019
https://doi.org/10.5194/bg-16-1187-2019
https://doi.org/10.1890/09-1968.1
https://doi.org/10.1890/ES14-00092.1
https://doi.org/10.1111/j.1365-2486.2008.01837.x
https://doi.org/10.1111/j.1365-2486.2008.01837.x
https://doi.org/10.1038/nature06591
https://doi.org/10.1038/nature06591
https://doi.org/10.1016/j.soilbio.2008.03.006
https://doi.org/10.1038/nrmicro2259
http://daac.ornl.gov
http://daac.ornl.gov
https://doi.org/10.1111/nph.14486
https://doi.org/10.1097/00010694-197705000-00005
https://doi.org/10.1890/15-1604.1
https://doi.org/10.1890/1051-0761(2000)010%5B0423:TVDOSO%5D2.0.CO;2
https://doi.org/10.1890/1051-0761(2000)010%5B0423:TVDOSO%5D2.0.CO;2
https://doi.org/10.1038/nature09396
https://doi.org/10.1111/ele.12269
https://doi.org/10.1038/ncomms9960


2684  |     ZHANG et Al.

controls. Nature Communications, 7, 13630. https ://doi.org/10.1038/
ncomm s13630

Kattge, J., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., … Wirth, 
C. (2011). TRY – A global database of plant traits. Global Change Biology, 
17, 2905–2935. https ://doi.org/10.1111/j.1365-2486.2011.02451.x

Kothawala, D. N., Moore, T. R., & Hendershot, W. H. (2008). Adsorption 
of dissolved organic carbon to mineral soils: A comparison of four iso-
therm approaches. Geoderma, 148, 43–50. https ://doi.org/10.1016/ 
j.geode rma.2008.09.004

Koven, C. D., Lawrence, D. M., & Riley, W. J. (2015). Permafrost carbon−
climate feedback is sensitive to deep soil carbon decomposability but 
not deep soil nitrogen dynamics. Proceedings of the National Academy 
of Sciences of the United States of America, 112, 3752–3757. https ://
doi.org/10.1073/pnas.14151 23112 

Koven, C. D., Riley, W. J., Subin, Z. M., Tang, J. Y., Torn, M. S., Collins, 
W. D., … Swenson, S. C. (2013). The effect of vertically resolved soil 
biogeochemistry and alternate soil C and N models on C dynamics 
of CLM4. Biogeosciences, 10, 7109–7131. https ://doi.org/10.5194/
bg-10-7109-2013

Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., 
Friedlingstein, P., … Prentice, I. C. (2005). A dynamic global vegeta-
tion model for studies of the coupled atmosphere-biosphere system. 
Global Biogeochemical Cycles, 19(1), https ://doi.org/10.1029/2003G 
B002199

Kuzyakov, Y. (2010). Priming effects: Interactions between living and 
dead organic matter. Soil Biology and Biochemistry, 42, 1363–1371. 
https ://doi.org/10.1016/j.soilb io.2010.04.003

Lal, R. (2016). Beyond COP 21: Potential and challenges of the "4 per 
Thousand" initiative. Journal of Soil and Water Conservation, 71, 20A–
25A. https ://doi.org/10.2489/jswc.71.1.20A

Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic 
matter. Nature, 528, 60–68. https ://doi.org/10.1038/natur e16069

Liang, S., Zhao, X., Liu, S., Yuan, W., Cheng, X., Xiao, Z., … Townshend, J. 
(2013). A long-term Global LAnd Surface Satellite (GLASS) data-set 
for environmental studies. International Journal of Digital Earth, 6, 
5–33. https ://doi.org/10.1080/17538 947.2013.805262

Lützow, M. V., Kogel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, 
G., Marschner, B., & Flessa, H. (2006). Stabilization of organic matter in 
temperate soils: Mechanisms and their relevance under different soil 
conditions – A review. European Journal of Soil Science, 57, 426–445. 
https ://doi.org/10.1111/j.1365-2389.2006.00809.x

Manzoni, S., Capek, P., Mooshammer, M., Lindahl, B. D., Richter, A., & 
Santruckova, H. (2017). Optimal metabolic regulation along resource 
stoichiometry gradients. Ecology Letters, 20, 1182–1191. https ://doi.
org/10.1111/ele.12815 

Manzoni, S., Moyano, F., Kätterer, T., & Schimel, J. (2016). Modeling cou-
pled enzymatic and solute transport controls on decomposition in 
drying soils. Soil Biology and Biochemistry, 95, 275–287. https ://doi.
org/10.1016/j.soilb io.2016.01.006

Manzoni, S., & Porporato, A. (2009). Soil carbon and nitrogen mineraliza-
tion: Theory and models across scales. Soil Biology and Biochemistry, 
41, 1355–1379. https ://doi.org/10.1016/j.soilb io.2009.02.031

McGuire, A. D., Lawrence, D. M., Koven, C., Clein, J. S., Burke, E., Chen, G., 
… Zhuang, Q. (2018). Dependence of the evolution of carbon dynamics 
in the northern permafrost region on the trajectory of climate change. 
Proceedings of the National Academy of Sciences of the United States of 
America, 115, 3882–3887. https ://doi.org/10.1073/pnas.17199 03115 

Murphy, B. W. (2015). Impact of soil organic matter on soil properties—a 
review with emphasis on Australian soils. Soil Research, 53, 605–635. 
https ://doi.org/10.1071/SR14246

Muttil, N., & Jayawardena, A. W. (2008). Shuffled Complex Evolution model 
calibrating algorithm: Enhancing its robustness and efficiency. Hydrological 
Processes, 22, 4628–4638. https ://doi.org/10.1002/hyp.7082

Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis 
of factors controlling soil organic matter levels in great plains 

grasslands. Soil Science Society of America Journal, 51, 1173–1179. 
https ://doi.org/10.2136/sssaj 1987.03615 99500 51000 50015x

Parton, W., Silver, W. L., Burke, I. C., Grassens, L., Harmon, M. E., Currie, 
W. S., … Fasth, B. (2007). Global-scale similarities in nitrogen release 
patterns during long-term decomposition. Science, 315, 361–364. 
https ://doi.org/10.1126/scien ce.1134853

Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., 
Berhe, A. A., … Wagai, R. (2018). Beyond clay: Towards an improved set 
of variables for predicting soil organic matter content. Biogeochemistry, 
137, 297–306. https ://doi.org/10.1007/s10533-018-0424-3

Robertson, A. D., Paustian, K., Ogle, S., Wallenstein, M. D., Lugato, E., & 
Cotrufo, M. F. (2019). Unifying soil organic matter formation and per-
sistence frameworks: The MEMS model. Biogeosciences, 16, 1225–
1248. https ://doi.org/10.5194/bg-16-1225-2019

Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., 
Painter, T. H., … Townsend, A. R. (1994). Climatic, edaphic, and biotic con-
trols over storage and turnover of carbon in soils. Global Biogeochemical 
Cycles, 8, 279–293. https ://doi.org/10.1029/94GB0 0993

Schimel, J. P., & Weintraub, M. N. (2003). The implications of exoenzyme 
activity on microbial carbon and nitrogen limitation in soil: A theo-
retical model. Soil Biology and Biochemistry, 35, 549–563. https ://doi.
org/10.1016/S0038-0717(03)00015-4

Schmidt, M. W., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., 
Janssens, I. A., … Trumbore, S. E. (2011). Persistence of soil organic 
matter as an ecosystem property. Nature, 478, 49–56. https ://doi.
org/10.1038/natur e10386

Shangguan, W., Dai, Y., Duan, Q., Liu, B., & Yuan, H. (2014). A global soil 
data set for earth system modeling. Journal of Advances in Modeling 
Earth Systems, 6, 249–263. https ://doi.org/10.1002/2013M S000293

Shi, Z., Crowell, S., Luo, Y., & Moore, B. III. (2018). Model structures 
amplify uncertainty in predicted soil carbon responses to climate 
change. Nature Communications, 9, 2171. https ://doi.org/10.1038/
s41467-018-04526-9

Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., & Janssens, I. 
(2015). Sensitivity of decomposition rates of soil organic matter 
with respect to simultaneous changes in temperature and moisture. 
Journal of Advances in Modeling Earth Systems, 7, 335–356. https ://
doi.org/10.1002/2014M S000358

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., 
… Venevsky, S. (2003). Evaluation of ecosystem dynamics, plant 
geography and terrestrial carbon cycling in the LPJ dynamic global 
vegetation model. Global Change Biology, 9, 161–185. https ://doi.
org/10.1046/j.1365-2486.2003.00569.x

Six, J., Bossuyt, H., Degryze, S., & Denef, K. (2004). A history of research 
on the link between (micro)aggregates, soil biota, and soil organic 
matter dynamics. Soil and Tillage Research, 79, 7–31. https ://doi.
org/10.1016/j.still.2004.03.008

Six, J., Feller, C., Denef, K., Ogle, S. M., de Moraes, J. C., & Albrecht, A. 
(2002). Soil organic matter, biota and aggregation in temperate and 
tropical soils – Effects of no-tillage. Agronomie, 22, 755–775.

Six, J., & Paustian, K. (2014). Aggregate-associated soil organic matter as an 
ecosystem property and a measurement tool. Soil Biology & Biochemistry, 
68, A4–A9. https ://doi.org/10.1016/j.soilb io.2013.06.014

Sokol, N. W., Sanderman, J., & Bradford, M. A. (2019). Pathways of min-
eral-associated soil organic matter formation: Integrating the role 
of plant carbon source, chemistry, and point of entry. Global Change 
Biology, 25, 12–24. https ://doi.org/10.1111/gcb.14482 

Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F., & Six, J. (2007). Soil 
carbon saturation: Concept, evidence and evaluation. Biogeochemistry, 
86, 19–31. https ://doi.org/10.1007/s10533-007-9140-0

Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., 
Jenkins, M., … Zimmermann, M. (2013). The knowns, known unknowns 
and unknowns of sequestration of soil organic carbon. Agriculture, 
Ecosystems & Environment, 164, 80–99. https ://doi.org/10.1016/j.agee. 
2012.10.001

https://doi.org/10.1038/ncomms13630
https://doi.org/10.1038/ncomms13630
https://doi.org/10.1111/j.1365-2486.2011.02451.x
https://doi.org/10.1016/j.geoderma.2008.09.004
https://doi.org/10.1016/j.geoderma.2008.09.004
https://doi.org/10.1073/pnas.1415123112
https://doi.org/10.1073/pnas.1415123112
https://doi.org/10.5194/bg-10-7109-2013
https://doi.org/10.5194/bg-10-7109-2013
https://doi.org/10.1029/2003GB002199
https://doi.org/10.1029/2003GB002199
https://doi.org/10.1016/j.soilbio.2010.04.003
https://doi.org/10.2489/jswc.71.1.20A
https://doi.org/10.1038/nature16069
https://doi.org/10.1080/17538947.2013.805262
https://doi.org/10.1111/j.1365-2389.2006.00809.x
https://doi.org/10.1111/ele.12815
https://doi.org/10.1111/ele.12815
https://doi.org/10.1016/j.soilbio.2016.01.006
https://doi.org/10.1016/j.soilbio.2016.01.006
https://doi.org/10.1016/j.soilbio.2009.02.031
https://doi.org/10.1073/pnas.1719903115
https://doi.org/10.1071/SR14246
https://doi.org/10.1002/hyp.7082
https://doi.org/10.2136/sssaj1987.03615995005100050015x
https://doi.org/10.1126/science.1134853
https://doi.org/10.1007/s10533-018-0424-3
https://doi.org/10.5194/bg-16-1225-2019
https://doi.org/10.1029/94GB00993
https://doi.org/10.1016/S0038-0717(03)00015-4
https://doi.org/10.1016/S0038-0717(03)00015-4
https://doi.org/10.1038/nature10386
https://doi.org/10.1038/nature10386
https://doi.org/10.1002/2013MS000293
https://doi.org/10.1038/s41467-018-04526-9
https://doi.org/10.1038/s41467-018-04526-9
https://doi.org/10.1002/2014MS000358
https://doi.org/10.1002/2014MS000358
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1016/j.still.2004.03.008
https://doi.org/10.1016/j.still.2004.03.008
https://doi.org/10.1016/j.soilbio.2013.06.014
https://doi.org/10.1111/gcb.14482
https://doi.org/10.1007/s10533-007-9140-0
https://doi.org/10.1016/j.agee.2012.10.001
https://doi.org/10.1016/j.agee.2012.10.001


     |  2685ZHANG et Al.

Tang, J., & Zhuang, Q. (2009). A global sensitivity analysis and Bayesian infer-
ence framework for improving the parameter estimation and prediction 
of a process-based Terrestrial Ecosystem Model. Journal of Geophysical 
Research: Atmospheres, 114. https ://doi.org/10.1029/2009J D011724

Tang, X., Zhao, X., Bai, Y., Tang, Z., Wang, W., Zhao, Y., … Zhou, G. (2018). 
Carbon pools in China's terrestrial ecosystems: New estimates based 
on an intensive field survey. Proceedings of the National Academy of 
Sciences of the United States of America, 115, 4021–4026. https ://doi.
org/10.1073/pnas.17002 91115 

Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & 
Zimov, S. (2009). Soil organic carbon pools in the northern circum-
polar permafrost region. Global Biogeochemical Cycles, 23, GB2023. 
https ://doi.org/10.1029/2008G B003327

Tifafi, M., Guenet, B., & Hatté, C. (2018). Large Differences in global and 
regional total soil carbon stock estimates based on SoilGrids, HWSD, 
and NCSCD: Intercomparison and evaluation based on field data 
from USA, England, Wales, and France. Global Biogeochemical Cycles, 
32, 42–56. https ://doi.org/10.1002/2017G B005678

Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., 
Tarnocai, C., Schuur, E. A. G., & Allison, S. D. (2013). Causes of variation 
in soil carbon simulations from CMIP5 Earth system models and com-
parison with observations. Biogeosciences, 10, 1717–1736. https :// 
doi.org/10.5194/bg-10-1717-2013

Tucker, C. J., Pinzon, J. E., Brown, M. E., Slayback, D. A., Pak, E. W., 
Mahoney, R., … El Saleous, N. (2005). An extended AVHRR 8-km 
NDVI dataset compatible with MODIS and SPOT vegetation NDVI 
data. International Journal of Remote Sensing, 26, 4485–4498. https ://
doi.org/10.1080/01431 16050 0168686

Ukonmaanaho, L., Pitman, R., Bastrup-Birk, A., Breda, N., & Rautio, P. 
(2016). Part XIII: Sampling and analysis of litterfall. In UNECE ICP 
Forests Programme Co-ordinating Centre (Ed.), Manual on methods 
and criteria for harmonized sampling, assessment, monitoring and anal-
ysis of the effects of air pollution on forests (pp. 5–16). Eberswalde, 
Germany: Thünen Institute for Forests Ecosystems.

Viovy, N. (2018).CRUNCEP version 7 – Atmospheric forcing data for the 
community land model. Research Data Archive at the National Center 
for Atmospheric Research. In Computational and Information Systems 
Laboratory. Retrieved from http://rda.ucar.edu/datas ets/ds314.3/

Viscarra Rossel, R. A., & Hicks, W. S. (2015). Soil organic carbon and 
its fractions estimated by visible-near infrared transfer functions. 
European Journal of Soil Science, 66, 438–450. https ://doi.org/10.1111/
ejss.12237 

Viscarra Rossel, R. A., Lee, J., Berhrens, T., Luo, Z., Baldock, J., & Richards, 
A. (2019). Continental-scale soil carbon composition and vulnerabil-
ity modulated by regional environmental controls. Nature Geoscience, 
12, 547–552. https ://doi.org/10.1038/s41561-019-0373-z

von Lützow, M., Kögel-Knabner, I., Ekschmitt, K., Flessa, H., 
Guggenberger, G., Matzner, E., & Marschner, B. (2007). SOM frac-
tionation methods: Relevance to functional pools and to stabilization 
mechanisms. Soil Biology and Biochemistry, 39, 2183–2207. https ://
doi.org/10.1016/j.soilb io.2007.03.007

Wagner, S., Cattle, S. R., & Scholten, T. (2007). Soil-aggregate forma-
tion as influenced by clay content and organic-matter amendment. 
Journal of Plant Nutrition and Soil Science, 170, 173–180. https ://doi.
org/10.1002/jpln.20052 1732

Wang, G., Post, W. M., & Mayes, M. A. (2013). Development of micro-
bial-enzyme-mediated decomposition model parameters through 
steady-state and dynamic analyses. Ecological Applications, 23, 255–
272. https ://doi.org/10.1890/12-0681.1

Wang, Q., He, T., & Liu, J. (2016). Litter input decreased the response 
of soil organic matter decomposition to warming in two subtropical 

forest soils. Scientific Reports, 6, 33814. https ://doi.org/10.1038/
srep3 3814

Wang, Y. P., Chen, B. C., Wieder, W. R., Leite, M., Medlyn, B. E., 
Rasmussen, M., … Luo, Y. Q. (2014). Oscillatory behavior of two non-
linear microbial models of soil carbon decomposition. Biogeosciences, 
11, 1817–1831. https ://doi.org/10.5194/bg-11-1817-2014

Wieder, W. R., Boehnert, J., & Bonan, G. B. (2014). Evaluating soil bio-
geochemistry parameterizations in Earth system models with ob-
servations. Global Biogeochemical Cycles, 28, 211–222. https ://doi.
org/10.1002/2013G B004665

Wieder, W. R., Bonan, G. B., & Allison, S. D. (2013). Global soil carbon 
projections are improved by modelling microbial processes. Nature 
Climate Change, 3, 909–912. https ://doi.org/10.1038/nclim ate1951

Wieder, W. R., Grandy, A. S., Kallenbach, C. M., & Bonan, G. B. (2014). Integrating 
microbial physiology and physio-chemical principles in soils with the 
MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences, 
11, 3899–3917. https ://doi.org/10.5194/bg-11-3899-2014

Wieder, W. R., Grandy, A. S., Kallenbach, C. M., Taylor, P. G., & Bonan, G. B. 
(2015). Representing life in the Earth system with soil microbial func-
tional traits in the MIMICS model. Geoscientific Model Development, 
8, 1789–1808. https ://doi.org/10.5194/gmd-8-1789-2015

Wieder, W. R., Hartman, M. D., Sulman, B. N., Wang, Y.-P., Koven, C. 
D., & Bonan, G. B. (2018). Carbon cycle confidence and uncer-
tainty: Exploring variation among soil biogeochemical models. 
Global Change Biology, 24, 1563–1579. https ://doi.org/10.1111/gcb. 
13979 

Wu, D., Piao, S., Liu, Y., Ciais, P., & Yao, Y. (2018). Evaluation of CMIP5 
earth system models for the spatial patterns of biomass and soil car-
bon turnover times and their linkage with climate. Journal of Climate, 
31, 5947–5960. https ://doi.org/10.1175/JCLI-D-17-0380.1

Xia, J. Y., Luo, Y. Q., Wang, Y. P., Weng, E. S., & Hararuk, O. (2012). A 
semi-analytical solution to accelerate spin-up of a coupled carbon and 
nitrogen land model to steady state. Geoscientific Model Development, 
5, 1259–1271. https ://doi.org/10.5194/gmd-5-1259-2012

Xu, X., Thornton, P. E., & Post, W. M. (2013). A global analysis of soil mi-
crobial biomass carbon, nitrogen and phosphorus in terrestrial eco-
systems. Global Ecology and Biogeography, 22, 737–749. https ://doi.
org/10.1111/geb.12029 

Zhang, H., Goll, D. S., Manzoni, S., Ciais, P., Guenet, B., & Huang, Y. 
(2018). Modeling the effects of litter stoichiometry and soil mineral 
N availability on soil organic matter formation using CENTURY-CUE 
(v1.0). Geoscientific Model Development, 11, 4779–4796. https ://doi.
org/10.5194/gmd-11-4779-2018

Zhang, H., Yuan, W., Dong, W., & Liu, S. (2014). Seasonal patterns of 
litterfall in forest ecosystem worldwide. Ecological Complexity, 20, 
240–247. https ://doi.org/10.1016/j.ecocom.2014.01.003

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section. 

How to cite this article: Zhang H, Goll DS, Wang Y-P, et al. 
Microbial dynamics and soil physicochemical properties 
explain large-scale variations in soil organic carbon. Glob 
Change Biol. 2020;26:2668–2685. https ://doi.org/10.1111/
gcb.14994 

https://doi.org/10.1029/2009JD011724
https://doi.org/10.1073/pnas.1700291115
https://doi.org/10.1073/pnas.1700291115
https://doi.org/10.1029/2008GB003327
https://doi.org/10.1002/2017GB005678
https://doi.org/10.5194/bg-10-1717-2013
https://doi.org/10.5194/bg-10-1717-2013
https://doi.org/10.1080/01431160500168686
https://doi.org/10.1080/01431160500168686
http://rda.ucar.edu/datasets/ds314.3/
https://doi.org/10.1111/ejss.12237
https://doi.org/10.1111/ejss.12237
https://doi.org/10.1038/s41561-019-0373-z
https://doi.org/10.1016/j.soilbio.2007.03.007
https://doi.org/10.1016/j.soilbio.2007.03.007
https://doi.org/10.1002/jpln.200521732
https://doi.org/10.1002/jpln.200521732
https://doi.org/10.1890/12-0681.1
https://doi.org/10.1038/srep33814
https://doi.org/10.1038/srep33814
https://doi.org/10.5194/bg-11-1817-2014
https://doi.org/10.1002/2013GB004665
https://doi.org/10.1002/2013GB004665
https://doi.org/10.1038/nclimate1951
https://doi.org/10.5194/bg-11-3899-2014
https://doi.org/10.5194/gmd-8-1789-2015
https://doi.org/10.1111/gcb.13979
https://doi.org/10.1111/gcb.13979
https://doi.org/10.1175/JCLI-D-17-0380.1
https://doi.org/10.5194/gmd-5-1259-2012
https://doi.org/10.1111/geb.12029
https://doi.org/10.1111/geb.12029
https://doi.org/10.5194/gmd-11-4779-2018
https://doi.org/10.5194/gmd-11-4779-2018
https://doi.org/10.1016/j.ecocom.2014.01.003
https://doi.org/10.1111/gcb.14994
https://doi.org/10.1111/gcb.14994

