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Abstract Soils contain more carbon than plants or

the atmosphere, and sensitivities of soil organic carbon

(SOC) stocks to changing climate and plant produc-

tivity are a major uncertainty in global carbon cycle

projections. Despite a consensus that microbial degra-

dation and mineral stabilization processes control

SOC cycling, no systematic synthesis of long-term

warming and litter addition experiments has been used

to test process-based microbe-mineral SOC models.

We explored SOC responses to warming and increased

carbon inputs using a synthesis of 147 field manipu-

lation experiments and five SOCmodels with different

representations of microbial and mineral processes.

Model projections diverged but encompassed a similar

range of variability as the experimental results.

Experimental measurements were insufficient to elim-

inate or validate individual model outcomes. While all

models projected that CO2 efflux would increase and

SOC stocks would decline under warming, nearly one-

third of experiments observed decreases in CO2 flux

and nearly half of experiments observed increases in

SOC stocks under warming. Long-term measurements

of C inputs to soil and their changes under warming are

needed to reconcile modeled and observed patterns.

Measurements separating the responses of mineral-

protected and unprotected SOC fractions in manipu-

lation experiments are needed to address key uncer-

tainties in microbial degradation and mineral
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stabilization mechanisms. Integrating models with

experimental design will allow targeting of these

uncertainties and help to reconcile divergence among

models to produce more confident projections of SOC

responses to global changes.

Keywords Soil organic carbon � Warming �
Modeling � Meta-analysis � Litter addition �
Decomposition

Introduction

Global changes such as warming and rising atmo-

spheric CO2 concentrations are altering carbon (C) ex-

changes between terrestrial ecosystems and the

atmosphere (Bond-Lamberty and Thomson 2010;

Bond-Lamberty et al. 2018). Warming initially speeds

biochemical reactions and accelerates decomposition,

leading to a decline in SOC stocks (Li et al. 2016;

Melillo et al. 2017). However, long-term impacts of

warming are unclear; C loss could slow over time

(Bradford et al. 2008; Conant et al. 2011) or move

through phases of C equilibrium and loss (Melillo

et al. 2017). Higher CO2 levels stimulate plant growth

and inputs to soil, but long-term impacts on SOC

stocks are uncertain. Some litter addition experiments

have observed increased SOC accumulation (Lajtha

et al. 2014a; Liu et al. 2009), while others suggest only

weak SOC responses (Lajtha et al. 2014b; van

Groenigen et al. 2016). Overall, the lack of a

systematic synthesis of long-term warming and litter

addition experiments has made it difficult to draw

general conclusions with which to test current SOC

models or guide model development.

For decades SOCmodels represented C cycling and

storage using a simplified, linear approach (i.e. first-

order kinetics) (Coleman and Jenkinson 1996; Parton

et al. 1998) that did not explicitly simulate microbial

activity and soil mineral interactions (Schmidt et al.

2011). Similarly, experiments tended to measure bulk

SOC or CO2 efflux responses to warming and changes

in litter inputs, largely ignoring microbial-mineral

interactions occurring in different SOC pools (e.g.

Crowther et al. 2016; Romero-Olivares et al. 2017).

Meta-analyses of these experimental data often high-

lighted considerable variation in SOC responses

across space (Carey et al. 2016) and time (Rustad

et al. 2001), and have sometimes yielded contradictory

results (Crowther et al. 2016; van Gestel et al. 2018). A

lack of process-specific information in modeling,

experimental, and synthesis approaches has made it

difficult to tease apart the mechanisms that drive SOC

responses to global changes.
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Recently, models and experiments have begun

exploring in more detail how microbial and mineral

interactions influence SOC cycling (Cotrufo et al.

2013; Kallenbach et al. 2015; Lehmann and Kleber,

2015; Schmidt et al. 2011). A new family of SOC

models has emerged incorporating a range of different

structures that represent a diverse array of assumptions

related to microbial control of decomposition and

stabilization of SOC via interactions with mineral

particles (Dwivedi et al. 2017; Riley et al. 2014;

Salazar et al. 2018; Sulman et al. 2014; Tang and Riley

2015; Wang et al. 2015; Wieder et al. 2014; Wieder

et al. 2015). The high structural variation among

models reflects knowledge gaps pertaining to soil

biogeochemical processes such as enzymatic decom-

position, microbial dormancy, sorption of organic

matter to minerals, and interactions among these

processes, with alternative formulations representing

alternative hypotheses that cannot yet be resolved

(Fig. 1). Because they allow more alternative choices

of model structures, the introduction of nonlinear

process representations into models has the potential

to produce divergent model projections (Wieder et al.

2018; Bradford et al. 2016). However, examination of

the outcomes of alternative structural choices also

provides opportunities to identify key process uncer-

tainties and evaluate their potential importance in

driving model projections. A wealth of experimental

data exists showing SOC responses to long-term

warming (Carey et al. 2016; Crowther et al. 2016;

Romero-Olivares et al. 2017; Rustad et al. 2001) and C

inputs (Bowden et al. 1993; Nadelhoffer et al. 2006)

across a variety of ecosystems, enabling us to

systematically explore the assumptions of the new

family of SOC models.

Combining modeling, experimental, and synthesis

efforts can effectively highlight key uncertainties

underpinning SOC cycling. Here, we synthesized,

using a meta-analysis approach, SOC increases and

losses due to warming (Carey et al. 2016; Crowther

et al. 2016) and long-term detritus input and removal

treatments (DIRT) (Bowden et al. 1993; Nadelhoffer

et al. 2006). We selected these two manipulations

because they probe fundamental assumptions within

models and are directly related to key ongoing global

environmental changes. We simulated the effects of

warming and increased litter inputs on SOC stocks and

respiration rates in five models that were developed

with the intention of projecting C cycle responses to

global changes: one first-order model and four models

that explicitly represent microbial and mineral inter-

actions. We compared model results to synthesized

experimental data to ask: (1) Did the models reproduce

experimental responses? and (2) Which mechanisms

caused divergence among models and between mod-

eled and experimental responses? Based on these

results, we make suggestions to guide the next

generation of SOC models and experiments.

Methods

Models and simulations

We conducted a model-experiment comparison using

five SOC models (Fig. 1) coupled with a meta-

analysis of warming and litter addition experiments.

The five models were DAYCENT (Parton et al. 1998),

CORPSE (Sulman et al. 2014), MIMICS (Wieder et al.

2014), MEND (Wang et al. 2015), and RESOM (Tang

and Riley 2015). These models were developed

independently by different research groups, and were

chosen to represent a sample of SOC modeling

approaches being actively used or developed for

application in Earth system models (ESMs). DAY-

CENT is a version of the CENTURYmodel, one of the

most widely used SOC models, and employs first-

order structural assumptions similar to those of other

widely used models such as RothC (Coleman and

Jenkinson 1996) as well as all Coupled Model

Intercomparison Project Phase 5 (CMIP5) ESMs

(Todd-Brown et al. 2011). The other four models

diverge from DAYCENT and other models used in

current ESMs by explicitly modeling the activity and

growth of soil microbial biomass and its effects on

decomposition rates, along with physical protection of
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organic matter from microbial decomposition via

occlusion in aggregates or sorption to mineral surfaces

(Fig. 1 and described below).

The models differ in their decomposition kinetics

and representations of microbial biomass. DAYCENT

simulates decomposition as a first-order process

without explicit microbial activity. CORPSE simu-

lates decomposition rate as a saturating function of the

ratio of microbial biomass to substrate carbon. MEND

explicitly simulates enzymatic depolymerization

using Michaelis–Menten kinetics (saturating with

increasing substrate concentration) as well as active

and dormant fractions of microbial biomass. MIMICS

uses reverse Michaelis–Menten decomposition kinet-

ics (saturating with increasing microbial biomass) and

divides microbes into two functional groups repre-

senting copiotrophs and oligotrophs. RESOM calcu-

lates depolymerization and microbial monomer

uptake rates using equilibrium chemistry approxima-

tion (ECA) kinetics.

The models can be further divided based on their

representations of SOC protection. Protected pools in

CORPSE and MIMICS have linear growth and

turnover rates, comparable to DAYCENT’s passive

pool, which has a very slow turnover rate. MEND and

RESOM have non-linear, saturating representations of

SOC protection, reflecting the assumption that there is

a finite supply of mineral sorption sites in a soil.

Protected SOC in MEND can be decomposed, but at a

slower rate than unprotected SOC. While the concep-

tual representations of physical protection differ

somewhat among models, we grouped SOC fractions

in each model into protected and unprotected cate-

gories to compare among models. Despite the broad

model groupings (Fig. 1), each model contains a

unique set of assumptions, and they collectively

represent diverse alternative hypotheses about pro-

cesses and interactions such as mineral protection and

microbial feedbacks to C additions. See SI for a

detailed description of model assumptions and key

equations.

Using each of the five models, we conducted

simulations of simple, idealized experiments that

focused on key differences in model behaviors that

were comparable with observed results from existing

global change manipulations. We conducted simula-

tions for three soil textures (5, 20, and 70% clay) and

two litter qualities (low: 0.73% N, 24.4% lignin; high:

1.37% N, 16.6% lignin, but note that models used

varying definitions of litter quality).

Each model was spun up to equilibrium under

constant temperature (20 �C) and moisture (50% of

Fig. 1 Models included in

the comparison. Models are

arranged in a tree based on

major differences in explicit

process representation.

Specific processes are

indicated with symbols
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saturation), with constant C inputs of 500 g C m-2

year-1, with an equilibration target of less than 0.5%

change in total C stock over a 50-year period. Because

different clay content and litter quality values yielded

different model equilibrium states, model simulations

were spun up to equilibrium separately for each

combination of clay content and litter quality. Next,

we simulated manipulations to determine model

responses to sustained warming and increased C

inputs. Increased C inputs were applied as a doubling

of the continuous C input rate relative to the input rate

used in the spin-up and the control simulations,

Table 1 Summary of key uncertainties in processes and parameters identified in the model inter-comparison

Key uncertainty Model representation Symbols

Used in

Fig. 1

Guiding questions for future

experiments

Example studies

Microbial

feedbacks to

decomposition

Microbial enzymatic

decomposition functions

SOC decomposition best fits which

kinetics function? At what scale are

these functions most appropriate?

(Blagodatskaya and

Kuzyakov 2008;

Kuzyakov and

Blagodatskaya 2015; Tang

and Riley 2013)

Strength of microbial

biomass response to C

inputs

How does microbial biomass change

under long-term addition of C inputs?

(Kallenbach and Grandy

2011; Sanaullah et al.

2016)

Fixed versus dynamic

CUE

How temporally variable is CUE? How

does CUE vary with microbial

biomass?

(Blagodatskaya et al. 2014;

Frey et al. 2013; Devevre

and Horwath 2000;

Kallenbach et al. 2015)

Microbial dormancy What is the rate at which microbial

populations shift from active to

dormant? How do environmental

conditions modify this rate?

(Lennon and Jones 2011;

Salazar et al. 2018;

Placella et al., 2012)

Protected and

unprotected

fractions of

SOC

Temperature sensitivity of

protected SOC

formation and

deformation

How do physically fractionated pools of

C vary through time under long-term

warming?

(Poeplau et al. 2017;

Schnecker et al. 2016; Pold

et al. 2017; Kleber et al.

2011)

Capacity of microbes to

decompose protected

SOC

Using isotope tracers in different C

pools, how does microbial uptake of C

vary?

(Verchot et al. 2011)

Ratio of

protected:unprotected

SOC at equilibrium

Using a data synthesis approach, how

does protected:unprotected SOC vary

across studies?

(Lajtha et al. 2014a; Grandy

et al. 2007; Doetterl et al.

2015)

Maximum protected SOC

stock

Is there a saturating amount of protected

SOC, or does it increase linearly with

inputs?

(West and Six 2006; Gulde

et al. 2008; Stewart et al.

2008; Castellano et al.

2015)

Effect of soil mineralogy

on protected SOC

formation and

deformation

How does the rate of protected SOC

accumulation vary with mineralogy?

(Han et al. 2016; Rasmussen

et al. 2018; Doetterl et al.,

2015)

Context

dependency

Various parameter settings

for soil texture,

temperature, moisture,

and litter chemistry

At what spatial scale do these factors

contribute to variation in SOC

responses across time?

(West and Six 2006; Torn

et al. 1997)

Microbial mortality How do soil properties influence

microbial mortality?

(Schmidt et al. 2007; Burke

et al. 1989; Xu et al. 2017)
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maintaining the same litter composition and quality.

We conducted warming manipulations for 2 �C and

5 �C of simulated warming by increasing the temper-

ature relative to the 20 �C used in the spin-up and

control simulations, again reflecting many of the

experiments captured in our meta-analysis (see

below). Manipulations were simulated as instanta-

neous step changes from the spin-up conditions, and

continued for 50 years. Simulations were conducted

for each manipulation individually, for each combi-

nation of clay content and litter quality.

Experimental meta-analysis

To quantify the observed effects of experimental

warming and increasing C inputs on SOC stocks and

soil respiration rates, we performed a meta-analysis on

data from existing studies. For warming, we used data

published in two recent comprehensive reviews of

warming experiments (Carey et al. 2016; Crowther

et al. 2016). These studies were supplemented with

additional published data located using the search

terms ‘‘warming’’ AND ‘‘soil’’ AND/OR ‘‘respira-

tion’’ in ISI Web of Science and Google Scholar

through August 2016. We narrowed our search to field

studies reporting SOC in 0–10 cm mineral soil or soil

respiration. Our litter manipulation meta-analysis

focused on DIRT (Detritus Input and Removal Treat-

ment) experiments. To locate these, we used the search

terms ‘‘DIRT’’ AND ‘‘litter’’, and we supplemented

this search with publications listed on the DIRT

website (dirtnet.wordpress.com). In general, we

included studies that manipulated warming or litter

for at least 6 months to facilitate comparison with our

model simulations. We recorded soil clay percent if it

was reported, and if texture (e.g., sandy loam) was

reported we used the USDA texture classification

system to estimate soil clay percent as the center value

for the textural class. Experiment locations included

North America, Europe, Asia, and Antarctica (Sup-

plementary Fig. S1a). In total, we examined 147

studies from 95 field experiments. We analyzed 111

warming studies, of which 47 reported SOC and 64

reported soil respiration changes (Supplementary

Table S1). We analyzed 36 DIRT studies that included

data from 12 field experiments. Of these studies, 17

measured SOC and 19 measured soil respiration

responses to doubling leaf litter inputs (Supplementary

Table S2).

We extracted mean responses from treatment and

control groups, their respective standard deviations,

and sample sizes. If necessary, we calculated standard

deviation using standard error and sample size. To

extract data from graphs, we used Data Thief III

(Version 1.7, datathief.org). To determine the effect of

each treatment relative to control, we calculated the

log-response ratio (LRR):

LRRTemperature ¼ lnðYwarmedÞ � lnðYcontrolÞ ð1Þ

LRRAddition ¼ ln Yadditionð Þ � lnðYcontrolÞ ð2Þ

where Y is the mean of a treatment (warmed or

addition) or control group. LRR is centered around 0

such that positive LRR indicates the treatment mean

was higher than control, and negative LRR indicates

the treatment mean was lower than control. For each

LRR, we calculated the pooled study variance (V) as:

V ¼ s2t
nt
Y2
t þ

s2c
nc

Y2
C; ð3Þ

where s is standard deviation, n is sample size, Y is

sample mean, and t and c subscripts denote treatment

and control, respectively. To account for non-inde-

pendence of multiple studies conducted at the same

site or using the same control plots, we included site as

a random effect in our analyses (Gurevitch and Hedges

1999; Nakagawa and Santos 2012). We synthesized

LRR across studies using multivariate linear mixed

effects models separately for temperature and litter

addition manipulations. Standard deviations for all

data sets analyzed were known or calculated from

standard error and sample size. Therefore, when

responses in two categories were compared (e.g.,

warmed versus control), we used the Z-test, a standard

statistical comparison of two means when population

standard deviations are known. A high Z-score

indicated low overlap between the data distributions

and we report statistical significance (P value) of the

overlap at alpha = 0.05. We used regression analysis

to test for relationships between continuous variables,

for example temperature and percent clay, and we

report the coefficient of determination (R2) for those

relationships. We visually checked for publication

bias using a funnel plot, which plots the standardized

mean difference in control and treatment groups

against the inverse standard error and is used to detect

unpublished, often null, results (Duval and Tweedie

2000). We determined the correlation between
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response effect size (LRR) and potential explanatory

factors using bivariate correlation tests. The explana-

tory factors we examined were soil clay percent,

temperature difference from ambient, and duration of

study. All statistical analyses were performed using

the metafor package (version 2.0-0; Viechtbauer

2010) in R (version 3.5.0; R Core Team 2015).

Model and analysis code are available at

https://github.com/bsulman/INTERFACE-model-

experiment-synthesis. Model output and meta-analy-

sis data are available on Figshare (https://doi.org/10.

6084/m9.figshare.6981842).

Results

Measured and modeled variability in response

to warming

The meta-analysis revealed high variation in warming

responses of both soil CO2 flux (P = 0.26,

Z = - 1.13, Fig. 2a) and SOC (P = 0.18,

Z = - 1.35, Fig. 2b). Experiments with larger

increases in temperature had stronger positive respi-

ration responses to warming (P\ 0.01, Z = 5.48,

Supplementary Fig. S1c), but observed SOC losses did

not vary significantly with temperature (P = 0.11,

(a) (b)

(c) (d)

Fig. 2 Responses to warming. All panels show log response

ratio of experiment relative to control. Changes in soil CO2

efflux (a), total soil organic C (SOC) (b), unprotected SOC (c),
and protected SOC (d). Observations from field studies are

shown in gray with error bars representing standard error.

Colored lines show model simulations, including all values of

clay content, litter quality, and warming (2 or 5 8C). Shading
shows range of model simulations with different warming, soil

texture, and litter quality; light lines show individual simula-

tions; and dark solid lines show the mean across simulations.

Insets magnify key areas of plots
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Z = - 1.60). Observed respiration responses to warm-

ing were positively correlated with clay content

(P = 0.04, R2 = 0.11, Supplementary Fig. S1b).

Nearly one-third (19 of 64) of the experiments

measured lower CO2 production following the onset

of experimental warming (Fig. 2a). By contrast, all

models projected transient increases in CO2 flux,

although some projected brief subsequent oscillations

below control levels. Modeled and experimental CO2

flux responses were not significantly different

(P = 0.16, T = 1.42), and the ranges of LRR (mini-

mum to maximum values within each dataset) largely

overlapped (model LRR 0.00 to 1.40; experiment LRR

- 0.25 to 0.95). Nearly half (22 of 47) of the

experiments showed an increase in SOC under warm-

ing (potentially connected to changes in plant produc-

tivity or soil moisture; see Discussion) while all

models projected decreases in SOC (Fig. 2b). Overall,

these responses were significantly different (t-test:

P\ 0.01, T = 3.74), although the response ranges

overlapped (model LRR - 0.82 to 0.00; experiment

LRR - 0.61 to 0.31).

Rates and trajectories of SOC loss varied among

models, with some continuing to lose SOC after

50 years and others approaching a new steady state.

Model trajectories only diverged significantly after

15–20 years of warming (except for RESOM, which

diverged rapidly from the other models), and only

three experiments in the meta-analysis dataset lasted

longer than 20 years, making it difficult to evaluate

long-term model trajectories directly against experi-

ments. Initial simulated losses were generally driven

by unprotected C, which rapidly adjusted to new

steady states (Fig. 2c). Long-term trajectories were

controlled by protected C responses, some of which

plateaued or did not respond significantly and some of

(a) (b)

(c) (d)

Fig. 3 Responses to litter addition. Panels are the same as Fig. 2. Models simulated doubling of litter addition, and observations were

based on double leaf litter DIRT experiments
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which continued to decline after 50 years (Fig. 2d).

Due to the contrasting responses of SOC components

that were protected or unprotected from microbial

decomposition, the long-term impacts of warming

were sensitive to a combination of the shape of the

protected SOC response and the fraction of total SOC

that was in the protected pool. This fraction varied

widely among models (Supplementary Fig. S3).

Measured and modeled variability in response to C

inputs

In addition to warming responses, we examined the

responses of soil respiration and SOC stocks to

doubling of litter inputs in published studies (simulat-

ing global change effects on plant productivity and

litterfall). Doubling litter inputs increased observed

soil respiration over time resulting in up to 60% higher

respiration compared to control treatments (P = 0.03,

Z = 2.23, Fig. 3a). Simulated CO2 flux rates in most

models responded more rapidly than observed fluxes

to increases in litter addition. The models also had

stronger CO2 flux responses to litter inputs than the

experiments (t-test: P = 0.01, T = 4.33), but again the

ranges overlapped (model LRR 0.03 to 0.71; experi-

ment LRR - 0.03 to 0.44). Our meta-analysis showed

that, within 7 years, doubling litter inputs increased

SOC by a mean of 7% (Standard error ± 3%,

P = 0.02, Z = 2.34, Figs. 3b, S2), although there was

significant variability among experiments with some

documenting decreases in mineral soil C concentra-

tions. Across models, doubling litter inputs caused

increases in SOC that ranged from 5 to 80% by the end

of the 50-year simulations (Fig. 3b). Overall, the

models reported greater SOC accumulation than

experiments in response to litter inputs (t-test:

P\ 0.01, T = 4.53) and their ranges overlapped

substantially (model LRR 0.00 to 0.56; experiment

LRR - 0.08 to 0.32). As with warming, short-term

responses were dominated by rapid shifts of unpro-

tected C toward new steady state values or, forMEND,

a return to the control steady state value (Fig. 3c). By

contrast, long-term trajectories were driven by slower

shifts in protected C that varied among models

(Fig. 3d).

Modeled SOC responses to litter addition were

more divergent than modeled responses to warming.

Variations in responses over the first ten years of

enhanced litter addition were driven by differences in

the representation of unprotected SOC dynamics

among models. These were primarily determined by

key differences in model assumptions governing

microbial growth and SOC decomposition (Table 1).

Unprotected SOC in models with weak or nonexistent

microbial growth responses to increasing substrate

concentrations (CORPSE, DAYCENT) rapidly

approached new, higher equilibrium values close to

a 100% increase relative to control. By contrast,

models with strongmicrobial growth responses (due to

Michaelis–Menten or ECA kinetics) either returned to

initial unprotected SOC stocks after a transient

increase (MEND), approached a new equilibrium

unprotected SOC stock only moderately higher than

the control simulation (MIMICS), or increased slowly

toward a new equilibrium unprotected SOC lower than

a 100% increase (RESOM).

Protected SOC responses were contingent on each

model’s assumptions about the accessibility of pro-

tected SOC to decomposers. Models with protected

pools that were highly (MIMICS, CORPSE) or

relatively (RESOM) inaccessible to microbes could

accumulate more protected SOC over time, while

MEND, in which protected SOC was more susceptible

to microbial action, predicted a limited and transient

response. Importantly, we were unable to directly

compare modeled protected and unprotected SOC

responses with experimental results, because only two

of the manipulative experiments in our meta-analysis

reported density fractionation measurements (Crow

et al. 2009; Lajtha et al. 2014a). Both those studies

observed increases in light fraction SOC under litter

addition.

Influence of soil texture and litter quality

Model responses to both warming and doubled litter

addition were sensitive to clay content and litter

quality, resulting in relatively wide ranges in simu-

lated total SOC responses from each model (Figs. 2,

3). SOC in all models was less sensitive to both

warming (losing less SOC) and litter addition (gaining

less SOC) with higher clay content (Supplementary

Fig. S4), primarily because simulations with higher

clay content had larger fractions of SOC in protected

pools that were less sensitive to manipulations (Sup-

plementary Fig. S3). These model results contrasted

with the meta-analysis, which found that SOC was

more sensitive to both warming and litter addition
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when clay content was higher (see Supplement). Litter

quality effects differed by model for both manipula-

tions, with higher litter quality associated with higher

sensitivity in some models and lower sensitivity in

others. Variability among experiments in the meta-

analysis was on the same order as variability among

different models, which was generally larger than the

range in simulation results driven by differences in

clay content, litter quality, and warming intensity from

any individual model.

Discussion

How much C will be lost from or sequestered in soils

as the Earth’s climate and biogeochemistry continue to

change remains a pressing question that requires

insights from both experiments and models. Using a

diverse ensemble of state-of-the-art SOC models

(Fig. 1) and a multi-continent set of experimental

manipulations (Supplementary Fig. S1a), we demon-

strated that variability in SOC responses to warming

and litter addition observed across experiments is

similar in magnitude to variability among model

projections of SOC. However, no models reproduced

increases in SOC or decreases in CO2 efflux observed

in a significant fraction of warming experiments.

Individual models differed in their assumptions

regarding the mechanisms for SOC turnover. How-

ever, neither the individual assumptions nor the

overall model responses to warming and litter addition

could be confirmed or ruled out using the set of

experimental results—the experimental results were

too variable and their reported measurements were

incongruent with model representations of protected

and unprotected SOC fractions.

Models qualitatively diverged in their responses to

warming (Fig. 2) and litter addition (Fig. 3). Given

these disagreements among models, we highlight

fundamental uncertainties in the key mechanisms that

drive SOC cycling that we identified based on this

analysis, suggest key questions to guide future exper-

iments, and provide examples of studies targeting

those questions (Table 1). These uncertainties in

microbial and mineral mechanisms could contribute

to substantial uncertainties in the magnitude of

terrestrial C cycle feedbacks to climatic changes when

they are integrated over broad spatiotemporal scales in

global models.

All models projected SOC losses in response to

warming while experiments found both increases and

losses. Observed increases in SOC under warming

could be due to effects not included in the simulations,

such as increased plant growth and inputs to soil,

changing soil moisture, microbial community shifts,

or changes in microbial carbon use efficiency (CUE)

(Allison et al. 2010; DeAngelis et al. 2015; Frey et al.

2008, 2013; Melillo et al. 2017; Wang et al. 2013;

Wieder et al. 2013). Bradford et al. (2017) recently

found that site-specific variations in microbial bio-

mass can explain high variability in decomposition

responses to temperature. The wide spread among

both models and experiments reflected complex

processes underlying SOC decomposition and stabi-

lization, and the models included a range of represen-

tations of these complex processes. For example,

RESOM, MEND, and MIMICS included microbial

CUE responses to warming. However, our results

suggest that key dynamics that drive divergent SOC

responses to warming were either beyond the current

capabilities of the models (e.g., microbial community

shifts) or were not included in forcing information for

the warming simulations (e.g., increases in plant

inputs or decreases in soil moisture).

Model-empirical comparison of protected

and unprotected fractions

The generally slow response of protected relative to

unprotected SOC stocks was consistent with several

warming experiments that measured mineral-associ-

ated SOC and found that most SOC losses were

concentrated in the free light fraction, which is

typically assumed to be unprotected (Lajtha et al.

2014a; Phillips et al. 2016; Pries et al. 2017; Schnecker

et al. 2016). However, Pold et al. (2017) found that

mineral-associated SOC declined under warming

while particulate SOC did not. Temperature sensitivity

of protected SOC was an important source of uncer-

tainty in simulations (Table 1). Models that repre-

sented protected C fluxes as temperature-sensitive

processes (DAYCENT, MEND, RESOM, CORPSE)

lost protected SOC under warming, while MIMICS, in

which protected SOC turnover did not accelerate with

warming, did not lose protected SOC. Short-term

responses to litter addition were also dominated by

changes in unprotected SOC fractions (Fig. 3c). This

was consistent with observations from a 50-year litter
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addition experiment showing that the largest SOC

increases under litter additions were in the light

fraction and detecting no differences in protected SOC

fractions (Lajtha et al. 2014a). Note that minimal

changes in protected SOC stocks do not necessarily

imply that those stocks are inactive—balancing

increases or decreases in production and loss rates of

protected SOC could also explain steady C stocks even

in an actively cycling pool. The differences in model

structures and resulting behaviors represent mecha-

nistic uncertainties in projections of SOC cycling.

The suite of models investigated here varied in their

representation of physicochemical SOC protection

and how microbes respond to substrate availability,

processes which drive decomposition and stabilization

of SOC. Our simulation results suggest that more

widespread use of size and/or density fractionation

measurements (e.g., Christensen 2001)—which parti-

tion mineral-associated, occluded, and free light SOC

fractions and are useful proxies for SOC pools with

varying stabilities (Bailey et al. 2018)—could improve

testing of alternative model structures and parameter-

izations, especially if they were repeated over the

course of manipulation experiments. While these

fractions have been widely used in studies related to

land use change and agricultural conversion (e.g., Del

Galdo et al. 2003; John et al. 2005; Tan et al. 2007),

they have been less commonly measured in warming

and litter addition experiments (but see Crow et al.

2009; Lajtha et al. 2014a; Phillips et al. 2016; Pries

et al. 2017; Schnecker et al. 2016; Pold et al. 2017).

Combining fractionation measurements with tech-

niques that estimate soil C age and attribute CO2

production to different fractions (e.g., Lajtha et al.

2014a; Pries et al. 2017) could be especially useful.

However, comparisons of soil fractionation measure-

ments with models do require caution. Measured

fractions may integrate a spectrum of substrates with

different residence times (Chenu and Plante 2006;

Kögel-Knabner et al. 2008; von Lützow et al. 2007),

and definitions of protected pools differ among

models. We recommend further examination by the

global change community of how different models

define these pools and represent their dynamics, and

how these representations relate to measurable quan-

tities. We also recommend that global change exper-

iments measure and report soil mineralogical factors

that are known to be proxies for physico-chemical

protection capacity, such as soil texture, cation

exchange capacity (CEC), iron and aluminum oxides,

and clay mineralogy (Doetterl et al. 2015; Kallenbach

et al. 2016; Rasmussen et al. 2018; Xu et al. 2016).

Clay content serves as a proxy for other soil factors

that affect cycling of both unprotected and protected

SOC fractions (Bailey et al. 2018), despite the

assumption in most models that soil texture primarily

affects protected SOC formation and persistence. This

assumption could explain why models were unable to

reproduce the observed increase in sensitivity of SOC

stocks to warming and litter addition in soils with

higher clay content.

Coupling of biogeochemical models with soil

genesis and soil physics models (e.g., Finke and

Hutson 2008), or comparison with measurements

along gradients of weathering (e.g., Doetterl et al.

2018), could also help to address uncertainties in

mineralogy-SOC coupling. In addition, existing

experiments included in our meta-analysis were

heavily biased toward temperate climatic zones in

North America, Europe, and China. Experiments in

other regions of the world are necessary to develop

better constraints on SOC cycling across gradients of

climate, ecosystems, and soil types. Finally, the long

time-scale associated with divergence among models

underscores the need for multi-decadal experimental

manipulations to develop effective model constraints.

Harnessing uncertainty: the way forward

While our comparison of multiple model structures

produced a wide range of qualitatively and quantita-

tively different SOC projections, we found that

existing experimental measurements of CO2 fluxes

and total SOC were not sufficient to either eliminate or

validate any of the individual model outcomes. This

result highlights real uncertainties related to the

multiple ways microbes and minerals interact to

produce contrasting responses under global change

(Table 1). Often, adding more detailed process repre-

sentation is expected to improve model predictions

(Todd-Brown et al. 2011; Wieder et al. 2013).

However, our results suggest that the increasingly

diverse mechanistic representations of microbial and

mineral processes among recently developed soil C

models increase the spread among model projections,

because these changes introduce more choices of how

to represent processes (Wieder et al. 2018; Bradford

et al. 2016). First-order models can already generate
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divergent projections due to parameter uncertainties

(Luo et al. 2015, 2017), and the structural diversity

explored in our model comparison adds to those

already wide uncertainty ranges. We contend that the

widening spread among models due to structural

diversity represents not a degradation of predictive

ability but a more accurate estimation of predictive

uncertainty (Bradford et al. 2016; Lovenduski and

Bonan 2017).

High variability in measured SOC responses to

experimental manipulations currently limits the ability

to constrain these models using comparisons to

manipulative field experiments, but also exemplifies

the value of targeting experiments and measurements

to address the greatest sources of uncertainty. Testing

the fundamental assumptions underlying transfers of

carbon among pools within decay models rather than

comparing model projections of CO2 flux and total

SOC to field experiments may help clarify differences

among models and their projections. Using this

integrated model-experiment approach will advance

basic understanding of SOC cycling and ultimately

producemore confident projections of soil C responses

to global changes.
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