

Partitioning soil respiration: quantifying the artifacts of the trenching method

K. E. Savage () · E. A. Davidson · R. Z. Abramoff · A. C. Finzi · M.-A. Giasson

Received: 19 January 2018/Accepted: 15 July 2018 © Springer Nature Switzerland AG 2018

Abstract Total soil respiration (Rt) is a combination of autotrophic (Ra) and heterotrophic respiration (Rh). Root exclusion methods, such as soil trenching, are often utilized to separate these components. This method involves severing the rooting system surrounding a plot to remove the Ra component. However, soil trenching has potential limitations including (1) reduced water uptake in trenched plots that increases soil water content, which is one of the environmental controllers of Rt in many ecosystems, and (2) increased available carbon substrate for Rh

Responsible Editor: Sasha C. Reed.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10533-018-0472-8) contains supplementary material, which is available to authorized users.

K. E. Savage (⊠) Woods Hole Research Center, 149 Woods Hole Rd, Falmouth, MA 02540, USA e-mail: savage@whrc.org

E. A. Davidson

University of Maryland Center for Environmental Science, 301 Braddock Road, Frostburg, MD 21532, USA

R. Z. Abramoff · A. C. Finzi · M.-A. Giasson Boston University, 5 Cummington Mall, Boston, MA 02215, USA

R. Z. Abramoff

Lawrence Berkley National Laboratory, One Cyclotron Road, MS74R316C, Berkeley, CA 94720, USA

caused by recently severed dead roots. We present a methodology that utilizes a bayesian modeling framework to quantify the magnitude of artifacts from a large trenching manipulation experiment. Thus methodology corrects Rh and Ra observations at daily to seasonal time scales. This study finds that the artifacts, due to recently severed roots, persist over a 2 years study period and the artifacts due to altered soil moisture had the greatest impact during drought conditions.

Keywords Autotrophic respiration · Bayesian modeling · Heterotrophic respiration · Trenching

Abbreviations

- Ra Autotrophic respiration
- Rh Heterotrophic respiration
- Rt Total soil respiration
- RSR Recently severed roots
- SMT Soil moisture and temperature

Introduction

Terrestrial carbon (C) stocks contain two to three times the amount of C as is present in the atmosphere (Ciais et al. 2013) and in northeastern US temperate forests, soils are commonly in excess of 50% of total ecosystem C content (Fahey et al. 2005). In temperate forests, total soil respiration (Rt) is a major flux of C to

the atmosphere (Lavigne et al. 2003; Bond-Lamberty and Thomson 2010). Often Rt is measured as one flux, but comprised of two components, autotrophic respiration, (root-rhizosphere and associated microbial bacteria, Ra) and heterotrophic respiration ("free living" microbial bacteria, Rh).

Ra and Rh are large, poorly constrained components of the terrestrial carbon budget (Schulze et al. 2010). Estimates of the relative contribution of Ra to Rt vary spatially and seasonally from 10 to 90% (Hanson et al. 2000) with many studies showing roughly 30–60% using various partitioning techniques (Gaudinski et al. 2001; Gaumont-Guay et al. 2008; Comstedt et al. 2011; Savage et al. 2013), and metaanalysis (Subke et al. 2006).

Several methods are used to partition Ra and Rh, including isotopic analysis of respired C, (Cisneros-Dozal et al. 2006), tree girdling (Högberg et al. 2001), and trenching, (Drake et al. 2012; Savage et al. 2013). The trenching method is frequently used to separate the components of Rt (Ra and Rh) to address the influence of environmental controls on each component (Comstedt et al. 2011; Savage et al. 2013). Trenching involves severing the rooting system surrounding a treeless plot to remove photosynthetic carbon allocation belowground. Any measured respiration from the trenched plot is considered Rh. Ra is estimated by subtracting Rh from Rt measured in an adjacent un-trenched control plot.

While widely used, the trenching method disturbs soils and raises concerns over methodological artifacts. In upland soils, reductions in water uptake owing to the loss of plant roots in trenched plots increases moisture content, a primary control on Rt in many ecosystems (Savage and Davidson 2001; Jassal et al. 2008). It has been observed that soil moisture is greater in trenched plots compared to control plots, a result of eliminating transpiration through roots (Savage et al. 2013). Since soil moisture is an important driver of Rh, this artifact may have important implications for partitioning when using the trenching method. In a modeling effort using partial least squares projection, Comstedt et al. (2011) found that increased soil moisture in trenched plots accounted for a 29% overestimation of Rh of a spruce forest in Norway. This artifact may be most pronounced in dry seasons and well-drained soils. In a recent study in grasslands Balogh et al. (2016) found that *Rh* was the dominant component of Rt during dry and droughtinduced conditions. The relative contribution of Ra to Rt shows a seasonal trend (Savage et al. 2013), and artifacts from trenching may influence measured responses differently depending on seasonal moisture patterns.

Recently severed roots (RSR) temporarily increase available carbon substrate for Rh (Epron et al. 1999; Subke et al. 2006). A study (Scott-Denton et al. 2006), found that RSR continue to respire, utilizing stored starches, for several months after trenching but before decomposing, suggesting that RSR remains an important source of CO₂ production for months to years (Matamala et al. 2003; Diaz-Pines et al. 2010). Estimates of the artifact due to RSR range from 16% (Comstedt et al. 2011) to 25% (Epron et al. 1999) overestimate of Rh. Carbon loss due to RSR is dependent on root biomass and soil conditions and may need to be a site-specific estimate (Subke et al. 2006) for proper quantification.

The response of Ra and Rh to biotic and abiotic drivers differs, where Ra is linked closely to aboveground processes (Tang et al. 2005; Savage et al. 2013) and Rh is linked closely to factors such as soil temperature, moisture and substrate supply (Davidson et al. 2006, 2012). There is a further complicating link between Ra and Rh through rhizosphere processes. Rh can be stimulated by root exudates and by the process of "soil priming" (Cheng 2009; Finzi et al. 2015), wherein plant C allocation to roots and rhizosphere microbes, stimulates soil organic matter decomposition. Conversely, eliminating root inputs could reduce Rh due to priming (Cheng 2009; Finzi et al. 2015). Therefore, the presence or absence of a rooting system and associated rhizosphere can have an effect on Rh. In a simulation study, Finzi et al. (2015) estimated that 10-30% of the total soil mass may be influenced by rhizosphere processes and that 15% of Rh could be attributed to priming in a hypothetical temperate forest. This suggest the loss of roots from the trenching method may have offsetting effects by reducing Rh due to loss of soil priming, while simultaneously increasing *Rh* due to the addition of carbon from RSR.

To properly account for this important C flux in global carbon budget, these components of Rt must be quantified and well constrained. Our objective is to determine daily, seasonal and annual contributions of Ra and Rh relative to Rt using the trenching method. We use experimental and simulation approaches to estimate the influence of the artifacts of the trenching

method on estimates of Rh and Ra carbon loss from soils in a temperate deciduous forest. A Bayesian modeling framework is used to quantify and estimate uncertainty derived from two artifacts: (1) fresh C input due to RSR and, (2) changes in soil moisture and temperature (SMT). Pairing this approach with high temporal frequency measurements of soil CO₂ efflux and environmental conditions provides a novel opportunity to assess the impacts of artifacts at inter-annual, annual, seasonal and daily time steps.

Method

Site description

This study was conducted at the Harvard Forest near Petersham, Massachusetts USA (42832N, 72811W). The site is a 75 year old well-drained mixed hardwood forest. The dominant tree species is beech (*Fagus grandifolia*) and red oak (*Quercus rubra*). Soils are classified as Canton fine sandy loam, Typic Distrochrepts. Due to agricultural use in the 19th century, the upper mineral soil is partially disturbed. The mean annual temperature is + 8.5 °C and the mean annual precipitation is 1050 mm. See (Compton and Boone 2000) for further descriptions.

Trenching method

Pre-treatment soil respiration, moisture and temperature were collected during the spring through early fall of 2012. In the late fall of 2012, a trench was dug (50 cm depth) around a treeless 5×5 m area, severing all roots leading into the treatment plot. Water impermeable plastic tarp was placed along the walls of the trenched plot to prevent new root in-growth and backfilled. Understory vegetation within the trenched plot was clipped in early spring 2013 and 2014.

Four automated chambers were placed within the trenched plot and four in an adjacent control plot. Given the constrained space and the disturbance due to the trenching method, we used one large trenched plot with four replicate chambers within it as opposed to four separate trenched plots. We recognize this setup would be considered "pseudo-replication" with respect to treatment effects, however in our experience spatial heterogeneity in soil respiration within 5 m can be as great as between 25 m (Borken et al. 2006;

Giasson et al. 2013). The coefficient of variation (CV) in the trenched plot averaged 27% which is higher than the 22% CV measured in a fully replicated experiment at a similar location at the Harvard Forest (Borken et al. 2006).

Soil respiration measurements

Automated chambers were utilized in conjunction with the trenching method to partition Rt into its components, Rh and Ra. Respiration was measured for each chamber at 90 min intervals from early spring through late fall of 2012 (pre trenching), 2013 and 2014. For details on the automated system and flux calculations see Savage et al. (2014).

Respiration was not measured after trenching until early spring of 2013 (5 months). This allowed time for freshly severed roots to partially decompose and thereby reduce the potential CO_2 "pulse" from trenching. Soil temperature and moisture (10 cm depth, Campbell Scientific CS650 water content and temperature probes), were measured at 90 min intervals, concurrent with respiration. All data were collected and stored using a Campbell Scientific CR1000 datalogger. Measurements from the nontrenched plot (control) represent *Rt*, the combined *Rh* and *Ra*. Fluxes from the trenched plot represent *Rh* and the difference (Rt - Rh) represents *Ra*.

Root decomposition measurements

To account for carbon loss derived from decomposing roots, we conducted a 2-year root decomposition study. Roots were collected from the study area, classified by three size categories and placed in mesh bags. Forty root decomposition bags, 20 fine roots (< 1 mm diameter), 10 medium roots (1-5 mm diameter) and 10 coarse roots (> 5 mm diameter) were placed in the organic soil horizon of the trenched plot on Jan. 10, 2013 and root mass was measured over the course of 2013 and 2014 (5 measurement points over a total of 678 days). Four fine, two medium, and two coarse root decomposition bags were collected during each of the five sample periods. Upon collection, roots were dried (60 °C for 48 h) and weighed. In late 2014 only, new fine roots were observed to be growing through decomposition bags sampled from the trenched plot. These roots were not included in the decomposition measurement but may indicate a new artifact of this method that arises after a prolonged treatment period.

Recently severed root (RSR) artifacts

A simple decay model Eq. (1) was used in a Bayesian modeling framework Eq. (2) to determine a site specific decay parameter (k) for root decomposition;

$$Mt = Mo * e^{-kt} \tag{1}$$

where Mt is the final root mass (g C), Mo is the initial root mass (g C), t is time (d) and k is the decay constant (d^{-1}) . The posterior and joint probability distribution of the model are shown in Eq. (2).

$$\begin{bmatrix} Mo, k, \sigma_p^2 | Mt \end{bmatrix} \\ \propto \prod_{i=1}^n gamma \left(Mt_i | \frac{(Mo * \exp^{-kti})^2}{\sigma_p^2}, \frac{Mo * \exp^{-kti}}{\sigma_p^2} \right) \\ \times beta(k | \alpha, \beta) \times gamma(Mo | \alpha, \beta) \\ \times gamma(\sigma_p | \alpha, \beta) \end{bmatrix}$$
(2)

Mo and Mt and process model uncertainty (σ_p) were given uninformed gamma prior distributions and the decay constant (k) was given an uninformed beta prior distribution. For this model we used MCMC methods implemented within the Rjags package (R 3.0.2). The model was run for 20,000 iterations with three chains, discarding the first 5000 and using the remaining iterations to calculate posterior estimates. The Gelman–Rubin convergence diagnostic was used to assess convergence and Bayesian p value to determine model suitability. Model R code and prior information are available in Supplementary Material S1_RSR. To scale from the decomposition bags to the plot, decay constant (k) was then utilized in Epron et al. (1999) C_{loss} model—Eq. (3);

$$C_{loss} = (1 - a) * c * M * (1 - e^{-kt})$$
(3)

where, M is the site root biomass (g C m⁻²; Abramoff and Finzi 2016), *c* is the initial carbon concentration in roots (44%; from Epron et al. 1999), and *a* is the fraction of carbon incorporated into soil organic matter (0.22; from Epron et al. 1999). Root biomass was categorized into fine (< 2 mm diameter) and coarse (> 2 mm diameter). Due to the difference in root size categories for estimates of root biomass (Abramoff and Finzi 2016), and our decomposition bags, we grouped root decomposition bag categories of fine and medium into "fine +medium root" and equated that with root biomass estimate category of "fine". Coarse root decomposition bag category was equated with "coarse" root biomass. A decay constant (k) was determined for each of fine + medium and coarse roots Eq. (2). C_{loss} was determined for fine + medium roots and for coarse roots (Eq. 3) on a per day time step. This C_{loss} estimate from decaying roots was subtracted from observed *Rh* in the trenched plot (*Rh_{RSR}*).

Soil moisture and temperature (SMT) artifacts

We utilized a previously developed soil temperature and moisture model (Savage et al. 2009) in a Bayesian modeling framework Eq. (5) to determine the artifact of SMT, Eq. (4);

$$R = R_{ref} * Q^{\left(\left(\frac{T-10}{10}\right)\right)} * B^{(WCopt-WC)^2}$$
(4)

where R (mg C m⁻² h⁻¹) represents respiration (R_h or R_t): T is soil temperature (°C), R_{ref} is R at 10 °C (mg C m⁻² h⁻¹), Q is a unitless expression of the increase in R for each increase in 10 °C. WC is soil moisture content (cm³ H₂O cm⁻³ soil), and WC_{opt} is the optimal moisture content (cm³ H₂O cm⁻³ soil), B modifies the shape of the quadratic fit.

The posterior and joint probability distribution of the model are shown in Eq. (5).

$$\begin{bmatrix} Rref, Q, B, \sigma_p^2, |R] \\ \propto \prod_{i=1}^n norm((\log(R)|\log(R), Rref, Q, B, \sigma_{p_i}) \\ \times gamma(Rref|\alpha, \beta) \times gamma(Q|\alpha, \beta) \\ \times beta(B|\alpha, \beta) \times gamma(\sigma_p|\alpha, \beta) \end{bmatrix}$$
(5)

 R_{ref} , Q and B were given informed priors based on previous modeling work at Harvard Forest (Savage et al. 2013). The process model uncertainty (σ_p) was given an uninformed gamma prior. Bayesian modeling was implemented in the same manner as for the RSR model. Prior information and R model code available in Supplementary Material S2_SMT. It should be noted that the SMT model utilized for this research is site-specific, and that researchers utilizing this method for correction at alternative sites may need to use a different site specific temperature and moisture model. A brief explanation of how to alter the Bayesian modeling R code for alternative models is presented in Supplementary Material S2_SMT.

Equation (5) was used to model the artifact of SMT in the trenched plot with soil temperature and moisture from the control plot. Parameters from this model were used with soil temperature and moisture measured in the control plot, which are assumed the "true unaltered" temperature and moisture conditions. The percent difference between modeled results were used to "correct" observed *Rh*. This correction (Rh_{SMT}) is assumed to be *Rh* that would have been measured in the trenched plot had SMT not been altered by trenching. The percent change was applied to observed *Rh*; either increasing or decreasing observed *Rh* dependent on moisture and temperature (Fig. 1).

2. $R_{h SMT} = \%$ correction* R_{h}

Fig. 1 Flow diagram of SMT correction due to trenching artifacts related to altered soil temperature and moisture. (*a*) Using the temperature and moisture model, defined in Eq. (4), observed heterotrophic respiration (R_h), soil temperature (T_T) and moisture (WC_T) from the trenched plot were used to parameterize R_{ref} and Q and to generate a predicted estimate of heterotrophic respiration (R_{h_p}). (*b*) Derived parameters R_{ref} and Q, from (a), where then used in Eq. (4), along with soil temperature (T_C) and moisture (WC_C) from the control plot to predict heterotrophic respiration under natural soil temperature and moisture conditions (R_{h_pc}). (*c*.1) The % correction in predicted R_{h_p} and R_{h_pc} , (*c*.2) % correction was then used to correct observed R_h resulting in R_{h_sMT} , heterotrophic respiration under natural soil temperature

Bayesian statistics

An inverse Bayes factor (BayesFactor package R3.3.1) was used to determine strength of support for the difference between seasonal and mean daily *Rh* and *Rt*. The null hypothesis was defined as no difference between the control and trenched observations. Inverse Bayes factors were computed for each day of year and strength of support for the null hypothesis categorized (Jarosz and Wiley 2014). An inverse Bayes factor > 3 indicates strong positive support.

Results

Seasonal respiration estimates

Prior to trenching in 2012, *Rt* measured from control and pre-trenched plots were not different (Bayes factor < 1), and the pre-trenched plot showed lower soil moisture compared to the control plot (Supplementary Material S3). Post trenching, mean daily *Rt*, *Rh* and *Ra* showed a seasonal pattern in both 2013 and 2014 (Fig. 2a, f). On a daily time-step, the percent contribution of *Ra* to *Rt* varied considerably (Fig. 2b, g) and peaked in mid-summer months when temperatures were warmest and trees most active. *Ra* made a smaller contribution to *Rt* in spring and fall. Maximum percent contribution of *Ra* to *Rt* in 2013 was 38 and 34% in 2014.

In 2013, mean soil temperature in the trenched plot was 0.8 °C warmer than the control plot and 0.4 °C warmer in 2014 (Fig. 2c, h). In 2013, the mean soil moisture in the trenched plot was 2% wetter than the control plot and 3% wetter in 2014 (Fig. 2d, i). In 2013, the differences between trenched and control plot soil moisture were greatest in the mid-summer (8%), but in 2014 they were largest in the early spring (5%). In 2013, and for a longer period in 2014, soil moisture was below previously observed thresholds for "drought stress" of 0.12 cm⁻³ H₂O cm⁻³ soil as defined for this site in Savage and Davidson (2001).

During spring and fall 2014, Rh was greater than Rt (Fig. 2f, inverse Bayes factor > 3). In early spring of 2014, when roots were less active and soils were relatively dry, fluxes in the trenched plot (Rh) exceeded the control (Rt) by up to 18% (Fig. 2f). In the fall, Rh exceeded Rt, by up to 40%. During the

Fig. 2 2013 and 2014 mean daily summary of respiration (a and f), and % Ra contribution to Rt (b and g), filled diamonds indicate strong level of support for differences based on inverse Bayes factors (> 3). Also mean daily soil temperature at 10 cm, (c and h; the thin black line is soil temperature control-soil temperature trenched), mean daily soil moisture at 10 cm, (d and i; the thin black line is volumetric soil moisture (VSM) control-VSM trenched) and daily precipitation (e and j). % Ra contribution to Rt is % Ra = ((Rt - Rh)/Rt)*100

summer months, when roots were most active, *Rt* exceeded *Rh*.

Seasonal estimates of Rt, Rh and Ra for 2013 and 2014 were determined by summing respiration rates over each sampling season (Table 1). Missing data were linearly interpolated between sample dates. On a daily time-step, the percent contribution of Ra to Rtvaried considerably (Fig. 2b, g), with greatest contribution from Ra occurring during the mid-summer months. Growing season estimates of Rt were similar in both 2013 and 2014 (Table 1). However, the seasonal average percent contribution of Ra to Rt was higher in 2013 (23%) than in 2014 (9%). These seasonal estimates are not corrected for any artifact of the trenching method.

Artifacts of RSR

After 678 days of decomposition in the field, roots had lost 40–60% of their initial mass. Root decay constant (k) for fine + medium roots and for coarse roots were determined (Table 2). Mean decay values were similar to those found by McClaugherty et al. (1984) and Epron et al. (1999). Decay constants and estimates of

Year	Rt	Rh	Ra (% Ra/Rt) uncorrected	Carbon loss from RSR	Rh _{RSR}	$Rh_{RSR + SMT}$	$Ra_{RSR + SMT}$	% Ra/Rt corrected
2013	916	707	209 (23)	45	662 (<u>628–687</u>)	603 (<u>553–656</u>)	313 (260–363)	34 (28–37)
2014	935	852	83 (9)	32	820 (<u>798–837</u>)	735 (<u>700–770</u>)	200 (165–235)	21 (17–25)

Table 1 Total seasonal fluxes (2013 was 209 days and 2014 was 201 days) with corrected estimates of *Rh*, corrected for both RSR (*Rh*_{RSR}) and root plus SMT (*Rh*_{RSR + SMT})

All units are g C m⁻² season⁻¹. Gelman–Rubin test passed. 95% confidence intervals for parameter estimates from Eqs. (2) and (5) were used to derive uncertainty ranges (underlined italic). In 2013, % C loss from roots was 6.5 and 3.7% in 2014

Table 2 Decay constant k (scaled from daily to a yearly value) from Eq. (1) and upper and lower 95% confidence interval in brackets

Root class	Mean biomass M (g C m ⁻²)	Mean decay constant, $k (yr^{-1})$
Fine + medium	714 (433–995)	0.26 (0.24–0.32)
Coarse	291 (23–559)	0.27 (0.18-0.35)

M is the mean biomass estimate and 95% confidence interval. Model Bayesian p value = 0.47. Gelman-Rubin test passed

root biomass (Table 2) were used to estimate carbon loss, Eq. (3), due to RSR for 2013 and 2014 (Table 1). This carbon loss was subtracted from observed *Rh* to "correct" values for artifacts due to RSR (Rh_{RSR} ; Table 2). The annual effects of RSR on observed *Rh* was greater in 2013 (6.5%) compared to 2014 (3.7%; Table 1).

Artifacts of SMT

Rh was modeled using Eq. (4) and soil temperature and moisture measured within the trenched plot (Table 3). The trenched plot showed higher soil temperature and moisture compared to the control plot, (Fig. 2). We applied the modeled parameter estimates from Eqs. (5) to (4) and predicted respiration from the trenched plot using the soil moisture and temperature from the control plot. Using the percent difference between these modeled values, we subtracted this estimate from observed Rh to correct Rh for the artifacts of SMT (Fig. 2).

The modeled soil temperature and moisture content function had an overall effect of reducing measured estimates of *Rh* by 8% in 2013 and by 10% in 2014 (Table 3). Uncertainty in parameter estimates are defined by the 95% probability intervals of R_{ref} , Q and

Table 3 Model parameters and (95% confidence intervals)

	2013 (DOY 108-317)	2014 (DOY 121-321)
Trenched (Rh)	Rref = 67.9 (67.2–69.5)	Rref = 91.4 (90.8–92.1)
	Q10 = 3.9 (3.8 - 4.0)	$Q10 = 4.1 \ (4.0-4.2)$
	$B = 0.86 \ (0.84 - 0.88)$	$B = 0.88 \ (0.87 - 0.89)$
	soil T mean = 14.4	soil T mean = 13.5
	WC mean $= 0.22$	WC mean $= 0.21$
% correction Rh due to moisture and temperature artifacts	8.2	10.0
	(4–10)	(8–11)

Gelman–Rubin passed for 2013 and 2014. 2013 Bayesian p = 0.48, 2014 Bayesian p = 0.67. Soil T is soil temperature (°C) and WC is soil moisture content (cm³ H₂O cm⁻³ soil). % ranges for corrections are based on using max and min ranges given for model parameters

B (Table 3) and these intervals were used to bracket the range of estimated corrections due to SMT.

Total corrected respiration

Figure 3 shows the daily time-step of *Rt*, *Rh* and *Rh* corrected for RSR (Rh_{RSR}) and for the combination of RSR and SMT ($Rh_{RSR+SMT}$). Greatest rates of correction occurred during the mid-summer, particularly related to SMT differences. Due to observed *Rh* exceeding *Rt* in the spring and fall of 2014, negative *Ra* were estimated (Fig. 2g). After corrections due to artifacts (Fig. 3b), in particular due to moisture and temperature, corrected *Ra* ($Ra_{RSR+SMT}$), is now positive in the spring 2014, and fall of 2014, however the magnitude of the correction in the spring was much greater than observed in the fall of 2014 (Fig. 3b).

Total flux with corrected estimates, showed a greater overall magnitude of correction in 2014

compared to 2013, primarily driven by the artifacts of SMT (Tables 1 and 3). The overall new seasonal estimate of Ra contribution to Rt, after corrections were applied was 34% in 2013 and 21% in 2014 (Table 1).

Discussion

Prior to corrections for the artifacts of trenching, *Ra* contributed 23% to *Rt* over the 2013 growing season, similar to other uncorrected estimates at the Harvard Forest using the trenching method (23% *Ra*; Savage et al. 2013), but lower than the *Ra* contribution estimated from a hemlock stand girdling study (35% *Ra*; Orwig et al. 2013) and a ¹⁴C isotopic partitioning study, (41% *Ra*; Gaudinski et al. 2001). In the second year following trenching, the uncorrected contribution of *Ra* was 9%, much lower than that observed by other

Fig. 3 Daily C flux for observed fluxes in the control (black open squared) and trenched (black open circle) plots. a Thick black line is corrected for RSR and thick grey line corrected for RSR and SMT. b Black is observed *Ra*, light grey corrected *Ra* for RSR and dark grey corrected *Ra* for RSR and SMT

studies and methodologies. After corrections due to RSR and SMT artifacts, the percent contribution of Ra to Rt was 34% in 2013 and 21% in 2014. Clear trends emerged in the daily, seasonal and annual impacts of severed roots, moisture and temperature artifacts.

On a daily time step, RSR had a small impact on Rh (Fig. 3; Table 1). On an annual time scale, however, RSR decomposition had a significant impact on the estimate of *Rh* in the trenched plot, however it was smaller than the calculated soil moisture artifact. This was true in both years of the study during which time 40-60% of root mass was lost, and the effect of RSR is likely to have persisted into the future had the study continued. Based on the decay constant (k, Table 2)and initial site root biomass estimates for fine roots (Mo) for this study site (Abramoff and Finzi 2016), it would take 8 years for fine roots to lose 90% of their original mass. Overall, RSR reduced observed Rh 6.5% in 2013 and 3.5% in 2014. In a meta-analysis of experiments, Subke et al. (2006) highlighted that the uncertainty associated with additional decay of roots due to trenching was site specific and depended on root biomass and soil environmental characteristics. Comstedt et al. (2011) found a similarly low influence of root artifacts in a spruce forest, however, this is in contrast to other studies that have seen greater influence (Epron et al. 2001).

New fine roots were observed growing through root decomposition bags during the final collection period in 2014. This may be the result of either herbaceous root growth regenerating from understory vegetation or roots "invading" from outside the trenched plot, either through the plastic tarps in the trenched walls or from below the tarps upwards. We suspect Ra from these roots in the trenched plots, where the uncorrected method assumes that Ra is zero, may have contributed to the larger apparent rate of Rh in 2014, and the correspondingly low rate (9%) of uncorrected Ra. This leads to some uncertainty in the applicability of trenching to estimate Ra and Rh beyond a 2 years period.

Eliminating root inputs during trenching may reduce the contribution of Rh to Rt as a result of the loss of priming of SOM decomposition (Scott-Denton et al. 2006; Finzi et al. 2015). In temperate forests, it is estimated that priming contributes 10–25% of total Rh. Thus the addition of a priming effect would result in an even lower estimate of Ra than reported here. On the other hand, presence of RSRs may have provided sufficient carbon that there was little or no lack of C for priming additional decomposition. It should be noted that measurements of the magnitude of priming effects vary widely across and within plant species (Phillips et al. 2008, 2011; Abramoff and Finzi 2016).

Studies have shown that Rh is the dominant component of Rt during dry and drought induced treatments in a temperate forest (Borken et al. 2006). Dry conditions were observed during much of 2014 at Harvard Forest, but were less evident in 2013. In the dry spring of 2014, the uncorrected Ra contribution to Rt was often < 0, as opposed to spring 2013 when Rawas consistently positive. During the dry summer months of 2014, the proportion of Ra to Rt was much lower and declined faster than observed in 2013. This indicates that the difference in moisture and temperature is a significant artifact that needs to be corrected, particularly during drought conditions and that the magnitude of the correction can differ daily and seasonally.

Ra and Rh showed seasonal trends in 2013 with Ra peaking mid-summer when trees were most active. There was a slight increase in the relative proportion of Rh to Rt in the fall (Fig. 2b, % Ra declines therefore %Rh increases). The declining trend in Ra from mid-summer to fall suggests a reduction of above ground carbohydrate transport to support belowground processes, resulting in a measured total soil respiration during the fall dominated by Rh. This result is consistent with observations throughout the Harvard Forest in stands dominated by hardwood trees where the late summer and fall decline in ecosystem respiration is dominated by belowground fluxes (Giasson et al. 2013).

Conclusions

The trenching method is a useful technique for partitioning *Ra* and *Rh*, but recognized artifacts may need to be considered on a site-specific basis. RSR affected annual and interannual estimates at this study site, and artifacts due to moisture and temperature had large impacts at daily, seasonal and annual time steps. Use of high frequency measurements allowed us to identify these artifacts, particularly during drought conditions of the 2014 spring, something that might have been missed with a longer less frequent sampling interval.

The Bayesian modeling framework allows for the generation of credible uncertainty intervals that can assist in bracketing estimates of the components of Rt, including the magnitude of the adjustments for potential artifacts. This work outlines a protocol for quantifying and correcting the artifacts of recently severed roots and altered moisture and temperature that can be easily implemented for site-specific corrections.

Acknowledgements This work was funded by the DOE-TES, Award Number DE-SC0006741. All model code in Supplementary Materials S1 and S2 are made available in the GitHub repository https://github.com/Savage149/Trenching-Artifacts.

References

- Abramoff RZ, Finzi AC (2016) Seasonality and partitioning of root allocation to rhizosphere soils in a midlatitude forest. Ecosphere 7(11):e01547. https://doi.org/10.1002/ecs2. 1547
- Balogh J, Papp M, Pinter K, Foti S, Posta K, Eugster W, Nagy Z (2016) Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands. Biogeosciences 13(18):5171–5182
- Bond-Lamberty B, Thomson A (2010) Temperature-associated increases in the global soil respiration record. Nature 464(7288):579–582
- Borken W, Savage K, Davidson EA, Trumbore SE (2006) Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. Glob Chang Biol 12(2):177–193
- Cheng WX (2009) Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biol Biochem 41(9):1795–1801
- Ciais P, Sabine C, Bala G, Bopp L, et al (2013) Carbon and other biogeochemical cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds.) Climate change: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
- Cisneros-Dozal LM, Trumbore SE, Hanson PJ (2006) Partitioning sources of soil-respired $CO_{(2)}$ and their seasonal variation using a unique radiocarbon tracer. Glob Chang Biol 12(2):194–204
- Compton JE, Boone RD (2000) Long-term impacts of agriculture on soil carbon and nitrogen in New England forests. Ecology 81(8):2314–2330
- Comstedt D, Bostrom B, Ekblad A (2011) Autotrophic and heterotrophic soil respiration in a Norway spruce forest: estimating the root decomposition and soil moisture effects in a trenching experiment. Biogeochemistry 104(1–3):121–132

- Davidson EA, Janssens IA, Luo YQ (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q(10). Glob Chang Biol 12(2):154–164
- Davidson EA, Samanta S, Caramori SS, Savage K (2012) The Dual Arrhenius and Michaelis-Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob Chang Biol 18(1):371–384
- Diaz-Pines E, Schindlbacher A, Pfeffer M, Jandl R, Zechmeister-Boltenstern S, Rubio A (2010) Root trenching: a useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest. Eur J For Res 129(1):101–109
- Drake JE, Oishi AC, Giasson MA, Oren R, Johnsen KH, Finzi AC (2012) Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO₂] and N fertilization. Agric For Meteorol 165:43–52
- Epron D, Farque L, Lucot E, Badot PM (1999) Soil CO₂ efflux in a beech forest: the contribution of root respiration. Ann For Sci 56(4):289–295
- Epron D, Le Dantec V, Dufrene E, Granier A (2001) Seasonal dynamics of soil carbon dioxide efflux and simulated rhizosphere respiration in a beech forest. Tree Physiol 21(2–3):145–152
- Fahey TJ, Siccama TG, Driscoll CT, Likens GE, Campbell J, Johnson CE, Battles JJ, Aber JD, Cole JJ, Fisk MC, Groffman PF, Hamburg SP, Holmes RT, Schwarz PA, Yanai RD (2005) The biogeochemistry of carbon at Hubbard Brook. Biogeochemistry 75:109–176
- Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP (2015) Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob Chang Biol 21(5):2082–2094
- Gaudinski JB, Trumbore SE, Davidson EA, Zheng SH (2001) Soil carbon cycling in a temperate forest: radiocarbonbased estimates of residence times, sequestration rates and partitioning of fluxes (vol 51, pg 33, 2000). Biogeochemistry 52(1):113–114
- Gaumont-Guay D, Black TA, Barr AG, Jassal RA, Nesic Z (2008) Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand. Tree Physiol 28(2):161–171
- Giasson M-A, Ellison MA, Bowden RD, Crill PM, Davidson EA, Drake JE, Frey SD, Hadley JL, Lavine M, Melillo JM, Munger JW, Nadelhoffer KJ, Nicoll L, Ollinger SV, Savage KE, Steudler PA, Tang J, Varner RK, Wofsy SC, Foster DR, Finzi AC (2013) Soil respiration in a northeastern US temperate forest: a 22-year synthesis. Ecosphere 4(11):140. https://doi.org/10.1890/ES13.00183.1
- Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48(1):115–146
- Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411(6839):789–792
- Jarosz A, Wiley J (2014) What are the odds? A practical guide to computing and reporting Bayes factors. J Probl Solving 7(1):2

- Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008) Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Glob Chang Biol 14(6):1305–1318
- Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernie PY, Robitaille G (2003) Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Can J For Res 33(9):1744–1753
- Matamala R, Gonzalez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302(5649):1385–1387
- McClaugherty CA, Aber JD, Melillo JM (1984) Decomposition dynamics of fine roots in forested ecosystems. Oikos 42(3):378–386
- Orwig DA, Plotkin AAB, Davidson EA, Lux H, Savage KE, Ellison AM (2013) Foundation species loss affects vegetation structure more than ecosystem function in a northeastern USA forest. PeerJ 1:e41. https://doi.org/10.7717/ peerj.41
- Phillips RP, Erlitz Y, Bier R, Bernhardt ES (2008) New approach for capturing soluble root exudates in forest soils. Funct Ecol 22(6):990–999. https://doi.org/10.1111/j.1365-2435.2008.01495.x
- Phillips RP, Finzi AC, Bernhardt ES (2011) Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol Lett 14(2):187–194. https://doi.org/10.1111/j.1461-0248.2010. 01570.x
- Savage KE, Davidson EA (2001) Interannual variation of soil respiration in two New England forests. Global Biogeochem Cycles 15(2):337–350

- Savage K, Davidson EA, Richardson AD, Hollinger DY (2009) Three scales of temporal resolution from automated soil respiration measurements. Agric For Meteorol 149(11):2012–2021
- Savage K, Davidson EA, Tang J (2013) Diel patterns of autotrophic and heterotrophic respiration among phenological stages. Glob Chang Biol 19(4):1151–1159
- Savage K, Phillips R, Davidson E (2014) High temporal frequency measurements of greenhouse gas emissions from soils. Biogeosciences 11(10):2709–2720
- Schulze ED, Ciais P, Luyssaert S, Schrumpf M, Janssens IA, Thiruchittampalam B, Theloke J, Saurat M, Bringezu S, Lelieveld J, Lohila A, Rebmann C, Jung M, Bastviken D, Abril G, Grassi G, Leip A, Freibauer A, Kutsch W, Don A, Nieschulze J, Börner A, Gash JH, Dolman AJ (2010) The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Glob Chang Biol 16:1451–1469
- Scott-Denton LE, Rosenstiel TN, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Glob Chang Biol 12(2):205–216
- Subke JA, Inglima I, Cotrufo MF (2006) Trends and methodological impacts in soil CO2 efflux partitioning: a metaanalytical review. Glob Chang Biol 12(6):921–943
- Tang JW, Misson L, Gershenson A, Cheng WX, Goldstein AH (2005) Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada Mountains. Agric For Meteorol 132(3–4):212–227