
1. Introduction
The cycling of carbon and nitrogen are closely coupled in terrestrial ecosystems. N is a required constituent 
of nucleic acids, proteins, enzymes and biomass, and reduced C provides the energy needed to fuel metabolic 
reactions. Soil microorganisms play a central role in linking these cycles through the decomposition of soil or-
ganic matter, followed by assimilation of C and N into microbial biomass, partitioning of these elements among 
metabolic pathways, and through the production of extracellular enzymes. Despite the activities of ubiquitous 
microbial decomposers, soils sequester vast quantities of organic matter (Friedlingstein et al., 2020; Jobbágy & 
Jackson, 2000; Stockmann et al., 2013). Identifying the complex drivers of changes in these stocks, including 
soil microbial physiology, soil chemistry, enzyme activities, and environmental factors, has remained a primary 
challenge in the field (Lehmann et al., 2020; Schmidt et al., 2011; Waring et al., 2020).

Soil biogeochemical models provide a useful framework for testing hypotheses on C and N cycling and predicting 
ecosystem responses to global change (Blankinship et al., 2018; Manzoni & Porporato, 2009). These types of 
models have increased in complexity over the past decades with growing information on linkages between soil 
C and N cycling, microbial physiology, enzyme kinetics, and their responses to temperature and moisture (e.g., 
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Manzoni & Porporato, 2009; Zhang et al., 2020, 2021). Advancements in the representation of N cycling in these 
models to account for the potential for N limitation has been shown to improve their capacity to predict C seques-
tration, which is often over-estimated in C-only models (Hungate, 2003; Thornton et al., 2007; Zaehle, 2013). An 
additional development in modeling C and N cycling has been the incorporation of more explicit representations 
of soil microbial physiology and the role of microbial groups in producing extracellular enzymes (e.g., Bouskill 
et al., 2012; Fatichi et al., 2019; Huang et al., 2018; Kyker-Snowden et al., 2020; Schimel & Weintraub, 2003; Sis-
tla et al., 2014; Tang & Riley, 2015; Waring et al., 2013). These advancements have allowed models to elucidate 
drivers of biogeochemical responses to environmental change (Allison et al., 2010; Sistla et al., 2014; Wieder 
et al., 2014) and improve their capacity to predict the spatial distribution of soil C (Wieder et al., 2013).

With growing complexity, biogeochemical models are sometimes able to more realistically represent microbial 
C and N cycling; however, the addition of new model compartments and parameters also has the potential for 
increasing uncertainty (Manzoni & Porporato, 2009; Marschmann et al., 2019; Shi et al., 2018). Several recent 
model comparison studies demonstrate divergent model predictions from closely related soil C cycle models. 
For example, even when given identical forcing data, models disagree on their response to temperature and plant 
inputs, due to a combination of differences in model forms and parameterization (Wieder et al., 2017). While 
such divergences are often demonstrated across model intercomparison efforts, it is often not immediately appar-
ent how to best tailor data collection efforts toward reducing model uncertainty, highlighting the need for closer 
integration between model development and data collection (Sulman et al., 2018; Weintraub et al., 2019; Xie 
et al., 2020; Zhou et al., 2021).

Soil biogeochemical models are subject to a number of sources of uncertainty, including model structural un-
certainty (Ajami & Gu, 2010; Myrgiotis et al., 2018). For example, microbial processes were previously often 
represented by a single microbial biomass pool, while more recent models have shifted to include multiple func-
tional guilds or distinguish between different microbial functional types (Moorhead & Sinsabaugh, 2006; Sistla 
et al., 2014; Waring et al., 2013; Wieder et al., 2014). Similarly, the number and types of specific C and N pools 
represented across models also varies, with a shift toward representing measurable, rather than conceptual pools 
(Abramoff et al., 2021; Zhang et al., 2021). Identifying soil biogeochemical model structures that are not only 
accurate representations of soil microbial functions but also useful and parsimonious tools for making projections 
and predictions remains an active area of research, with many contrasting approaches to model structure (Fan 
et al., 2021; Kyker-Snowman et al., 2020; Sainte-Marie et al., 2021; Tang & Riley, 2020; Waring et al., 2020; 
Zhang et al., 2021) and several model comparison efforts exploring the implications of differences in structure 
(Georgiou et al., 2021; Sulman et al., 2018; Zhou et al., 2021).

A second source of uncertainty, which often receives less attention than model structural uncertainty, is related to 
parameters used in models (Luo & Schuur, 2019). Most soil biogeochemical models use fixed parameter values 
selected ad hoc or derived from site-specific literature measurements. While some model parameters correspond 
to values that can be directly measured with relative ease (e.g., stoichiometries of soil organic matter and plant 
litter) or which reflect physical constants (e.g., diffusion coefficients), parameters that describe enzyme kinetics 
and microbial physiology can be more challenging to directly quantify. Specific enzyme kinetics are often meas-
ured in lab assays, but their translation into models has been challenging due to a mismatch between the con-
ceptual or simplified substrates represented in models and the diversity of highly specific extracellular enzymes, 
each with unique stoichiometries and sensitivities (Drake et al., 2013; Sinsabaugh et al., 2014, 2015). Microbial 
physiological parameters, such as carbon use efficiency or allocations toward extracellular enzyme production, 
are also particularly hard to quantify due to metabolic diversity across taxa and challenges with empirical meas-
urements (Ballantyne & Billings, 2018; Dijkstra et al., 2015; Geyer et al., 2016; Hagerty et al., 2018; Saifuddin 
et al., 2019). Despite large uncertainties in these parameter choices, soil C and N cycle models rarely account for 
parameter uncertainty explicitly.

In addition to quantifying these distinct sources of uncertainty, identifying which types of data have the poten-
tial to reduce uncertainty in soil biogeochemical models is necessary to ensure that data collection efforts are 
synchronized with efforts to improve model performance. In complex soil biogeochemical models with several 
pools and dozens of parameters, it may not be readily evident which data sets will most directly reduce model un-
certainty. The use of a Bayesian statistical framework has been demonstrated to allow for improved comparisons 
between soil biogeochemical models (Ajami & Gu, 2010; Xie et al., 2020), and the use of simulated data with a 
Bayesian approach has been used to identify pool sizes in a soil carbon model (Scharnagl et al., 2010). Here, we 
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develop one approach to quantifying model parameter uncertainty using a combination of real and simulated data 
to inform future data collection efforts. Specifically, we use a microbially explicit model of soil C and N cycling, 
Dual Arrhenius Michaelis-Menten Microbial Carbon and Nitrogen Physiology (DAMM-MCNiP), to explore 
how parameters associated with enzyme kinetics, microbial uptake of C and N, and microbial physiology impact 
estimates of C and N cycling (Abramoff et al., 2017). Using a combination of sensitivity analyses and a Bayesian 
statistical approach, we explore the following questions:
 Inherent Model Sensitivity: Which model parameters have the greatest impact on estimates of soil C and N cy-

cling in this model?
 Bayesian Data Assimilation: Can the assimilation of existing data reduce parameter uncertainty in this model, 

and what is the impact of reducing parameter uncertainty on model estimates?
 Simulated Data to Identify High-Priority Field Studies: Which specific types of data collection efforts have the 

potential to reduce parameter uncertainty in this model most effectively?

2. Methods
2.1. DAMM-MCNiP Model Description

The DAMM-MCNiP model represents coupled soil C and N cycling through soil organic stocks (SOCN), dis-
solved organic stocks (DOCN), microbial biomass, and extracellular enzyme pools based on soil temperature and 
soil moisture (Figure 1, Abramoff et al., 2017; Davidson et al., 2011; Finzi et al., 2015). The model utilizes a com-
bination of Arrhenius and Michaelis-Menten kinetic equations to describe the depolymerization of SOCN, re-
sulting in the production of DOCN. A similar set of Arrhenius and Michaelis-Menten kinetic equations describe 
the incorporation of DOCN into microbial biomass. A series of microbial physiological parameters determine 
how C and N are partitioned between microbial biomass, enzyme production, respiration, and N mineralization 
(Figure 1). The model captures seasonal patterns of heterotrophic respiration at trenched (root-free) plots in a 

Figure 1. Major pools, fluxes, and equations in DAMM-MCNiP. Note. Dashed orange lines enclose equations used for 
depolymerization kinetics. Solid green lines enclose equations for uptake of DOCN (with the exception of [Enz], which only 
appears in depolymerization kinetics). Microbial parameters are shown above associated arrows. Parameters estimated in the 
present analysis are highlighted in red.
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temperate hardwood forest (Abramoff et al., 2017). This model structure is similar to those of several microbially 
explicit biogeochemical models across ecosystem types, making inferences regarding parameter uncertainty and 
model structure potentially generalizable (Abramoff et al., 2018; Manzoni & Porporato, 2009; Schimel & Wein-
traub, 2003; Sistla et al., 2014; Waring et al., 2013).

In DAMM-MCNiP, extracellular enzymes produced by microbes depolymerize a fraction of the SOCN pool 
according to equilibrium chemistry approximation kinetics (Tang, 2015), which are an approximation of reaction 
kinetics, similar to Michaelis-Menten:

Depolymerization rate = 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆 × [𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆] × [ENZ]
𝑘𝑘𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑 + [𝑆𝑆𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑉𝑉𝑆𝑆𝑆𝑆] + [ENZ] (1)

SOMavail, the fraction of the total SOCN pool available for depolymerization, is dependent on the cube of soil 
moisture (θ), which represents diffusional constraints of DOC substrates and extracellular enzymes in water 
films (dLiq), and the fraction of SOCN that is not physically or chemically occluded from enzyme-binding (Frac; 
Magill et al., 2000):

𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 𝐹𝐹𝐹𝐹𝑎𝑎𝐹𝐹 × 𝑑𝑑𝑑𝑑𝑎𝑎𝑑𝑑 × 𝜃𝜃3 (2)

The maximum rate of depolymerization is determined by soil temperature according to the Arrhenius function:

𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝑆𝑆 = 𝛼𝛼𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑑𝑑−
𝐸𝐸𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑
𝑅𝑅𝑅𝑅 (3)

Thus, a total of three kinetic parameters (Kmdep, adep, and Eadep) are involved in specifying depolymerization rates 
based on temperature and the pool sizes of SOCN and enzymes.

Following depolymerization, SOCN enters the DOCN pool, which is available for uptake by microbial biomass 
(Figure 1). Uptake rate is determined by Michaelis-Menten kinetics, which are dependent on the concentration of 
DOCN and the concentration of O2 based on soil moisture:

Uptake rate = MICN × 𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷 × [DOCN]
𝑘𝑘𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢 + [DOCN]

× [O2]
𝑘𝑘𝑘𝑘O2 + [O2]

 (4)

The maximum rate of uptake is specified by the Arrhenius function:

𝑉𝑉 𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷 = 𝛼𝛼𝑢𝑢𝑢𝑢𝑢𝑢 × 𝑒𝑒−
𝐸𝐸𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢
𝑅𝑅𝑅𝑅 (5)

Thus, four parameters (Kmupt, Kmo2, aupt, and Eaupt) are involved in specifying rates of DOCN uptake based on 
DOCN pool sizes and soil O2 concentration, which is dependent on soil moisture (Abramoff et al., 2017).

Following uptake, C and N are either retained within microbial biomass, allocated toward enzyme production, 
or lost through respiration and N mineralization. The model ranks the order of operation for these activities ac-
cording to:

respiration > enzyme production > microbial biomass production > overflow C = N min. 

Respiration is first calculated as a fixed fraction of C uptake (1 − CUE). Two separate parameters, p and q, deter-
mine maximum allocation of C and N toward enzyme production respectively, with actual allocations constrained 
by enzyme stoichiometry according to Liebig's law of the minimum (Liebig, 1842). If there remain excess C or 
N from this initial allocation that cannot be incorporated into enzymes due to stoichiometric demand, remaining 
C and N are maximally incorporated into microbial biomass. Finally, if there remain excess C or N that cannot 
be incorporated into biomass due to stoichiometric demand, it is lost as overflow respiration or N mineralization. 
While these assumptions regarding microbial physiology reflect a simplified representation of microbial resource 
allocation, they are in line with other microbially explicit biogeochemical models. Note that this model, parame-
terized with data from trenched (root-free) plots also lacks explicit representation of root and mycorrhizal uptake 
of N, which may lead to an overestimation of N availability for microbes relative to stands with intact roots. A 
more detailed description of the DAMM-MCNiP model and model code are available in Abramoff et al. (2017).
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2.2. Estimation of Parameter Sensitivity

DAMM-MCNiP requires a total of 25 parameters (Table 1). A subset of seven parameters are directly involved 
in the kinetic equations describing depolymerization and uptake, and three parameters are used to represent 
microbial physiology. The remaining 15 parameters are primarily associated with defining stoichiometries and 
soil physical properties. We assessed the sensitivity of model outputs to the 10 depolymerization, uptake, and 
physiological parameters. Each parameter was set to vary from 50% below to 50% above the default parameter 
value set in previous model publications (Table 1) in 10% increments (i) for a total of 11 parameter settings (y). 
The associated values for respiration, SOC, SON, DOC, DON, microbial biomass C, and microbial biomass N 
were calculated at each parameter setting (x). The sensitivity, or change in model outputs relative to changes in 
parameter values, was calculated over each pair of parameter settings (e.g., Pianosi et al., 2016):

Parameter Units Default value Description

Ea dep kJ mol−1 61.77 Activation energy for SOCN depolymerization

Km dep mg cm−3 0.0025 Half-saturation constant for SOCN 
depolymerization

a dep mg SOCN cm−3 (mg Enz cm−3)−1 hr−1 1.0815 × 1011 Pre-exponential constant for SOCN 
depolymerization

Ea upt kJ mol−1 61.77 Activation energy for DOCN uptake

a upt mg DOCN cm−3 (mg biomass cm−3)−1 hr−1 1.0815 × 1011 Pre-exponential constant for DOCN uptake

Km upt mg cm−3 0.3 Half-saturation constant for DOCN uptake

Km O2 cm3 O2 cm−3 air 0.121 Michaelis constant for O2

CUE mg mg−1 0.31 Carbon use efficiency

p - 0.5 Proportion of assimilated C allocated to 
enzyme production

q - 0.5 Proportion of assimilated N allocated to 
enzyme production

CNs - 27.6 C:N of soil

CNl - 27.6 C:N of litter

CNm - 10 C:N of microbial biomass

CNe - 3 C:N of enzymes

BD g cm−3 0.8 Bulk density

PD g cm−3 2.52 Particle density

r_death hr−1 0.00015 Microbial turnover rate

r_EnzLoss hr−1 0.001 Enzyme turnover rate

MICtoSOCN mg mg−1 0.5 Fraction of dead microbial biomass allocated 
to SOCN

a - 0.5 Proportion of enzyme pool acting on SOC pool 
(1 − a = proportion acting on SON pool)

Frac g C cm−3/g C cm−3 0.000414 Fraction of unprotected SOCN, using 
soluble substrate estimated from Magill 
et al. (2000)

Sat cm3 H2O cm−3 soil 1 Moisture saturation level

O2airfrac L O2/L air 0.209 Volume fraction of O2 air

D liq - 3.17 Diffusion coefficient for unprotected SOCN 
and DOCN in liquid

D gas - 1.67 Diffusion coefficient for O2 in air

Note. First ten rows show parameters estimated in the present analysis.

Table 1 
DAMM-MCNiP Parameters, Units, Default Values and Definitions
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Sensitivity�,�,� =
Output�+� − Output�

Output�
×
(

Parameter�+� − Parameter�
Parameter�

)−1

 (6)

This approach scales rates of change by both pool size and parameter size to allow for congruent comparisons 
across model outputs and parameter types, which can vary by orders of magnitude due to the variety of types of 
parameters and model outputs.

2.3. Estimation of Parameter Values Based on Data Assimilation

We utilized a Bayesian statistical framework to explore the potential for constraining parameter uncertainty 
through data assimilation (Dietze et al., 2014; Lu et al., 2017; Luo et al., 2009; Shi et al., 2015). This approach 
involves providing prior distributions describing the potential range of values for each parameter of interest. The 
likelihood of the observed data given particular parameter selections from within the prior distribution is then 
evaluated. This process is repeated manyfold to generate a posterior distribution describing how likely particular 
parameter values are given prior constraints and data.

As per Bayes' theorem (Box & Tiao, 1992), the posterior distribution P(θ|X) of the model parameters θ, given 
observational data X, can be calculated from the prior distribution P(θ) of the model parameters θ and the like-
lihood P(X|θ) as:

𝑃𝑃 (𝜃𝜃|𝑿𝑿) =
𝑃𝑃 (𝑿𝑿|𝜃𝜃)𝑃𝑃 (𝜃𝜃)

𝑃𝑃 (𝑿𝑿) (7)

In this analysis, we utilized broad, uniform prior distributions throughout all simulations (±50% of default param-
eter values) to explore a wide range of parameter options outside of those currently incorporated in the published 
model (Abramoff et al., 2017). Differential Evolution Markov Chain Monte Carlo (DEzs-MCMC, Ter Braak & 
Vrugt, 2008) simulations were performed to evaluate the likelihood across parameter space using the Bayesian-
Tools package (Hartig et al., 2018) in R (R core team, 2017). We used a normally distributed Likelihood function 
and performed simulations using three chains, each with 20,000 to 100,000 iterations as needed to achieve con-
vergence based on Gelman-Ruben potential scale reduction factors (psrf < 1.3). We estimated all 10 parameters 
of interest simultaneously or estimated parameters of a given category (depolymerization, uptake, or physiology) 
while holding others fixed.

We first assimilated published, field measurements of heterotrophic respiration from trenched plots at the Little 
Prospect Hill tract of the Harvard Forest Long-Term Ecological Research Site (42.58°N, 72.188°W) in Petersh-
am, Massachusetts, USA to constrain depolymerization, uptake and physiological parameters in DAMM-MCNiP. 
These observations were collected from a mixed hardwood forest dominated by Quercus rubra and Acer rubrum. 
Soils at these sites are classified as Canton fine sandy loam, Typic Distrochrepts. Mean annual precipitation at 
the site is 110 cm and mean annual temperature is 8°C. The respiration data used in this analysis were collected 
using automated soil respiration chambers monitoring CO2 efflux from the soil at half-hourly increments across 
the growing season in 2009 (Davidson et al., 2011; Savage et al., 2008). Simultaneous, automated measurements 
of soil moisture and soil temperature were also recorded (Davidson et al., 2011; Savage et al., 2008). Additional 
details on the carbon budget of Harvard Forest placing these fluxes in context of carbon stocks in the forest are 
described in Finzi et al. (2020).

Several of the model pools and fluxes in DAMM-MCNiP represent mechanistic processes upstream of respira-
tion which currently lack comparable, high-resolution observational data (Figure 1). To identify which of these 
data sets would be most useful for future collection and to explore how additional data constraints might impact 
parameter estimation, we simulated data for SOCN, DOCN, and microbial biomass pools and respiration rates 
using the default parameter values set in previous model publications and added normally distributed observation 
error. Simulated data paralleled the frequency of the observational respiration data, with hourly estimates over 
the course of a single growing season. We then used this simulated data to estimate parameters and compare re-
sulting posterior parameter distributions with the known parameter values used to simulate data. The model was 
fit to simulated data under five scenarios ((a) all pool size data available, (b) only SOCN pool size data available, 
(c) only DOCN pool size data available, (d) only microbial biomass data available, and (e) only respiration data 
available). We calculated the percent difference between the maximum a posteriori (MAP) parameter estimate 
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and the parameter value used in simulation to measure the accuracy of parameter estimation in each data availa-
bility scenario. Scenarios with low percent differences indicate that the data assimilation resulted in reconstruc-
tion of the true parameter value with high accuracy, while large percent differences between the MAP and the 
initial parameter value indicate that the data assimilation did not provide sufficient information for constraining 
parameter estimation. We measured the precision of parameter estimates by comparing the range of the posterior 
distribution (2.5%–97.5% interval) to the range of the prior distribution for each parameter:

Uncertainty Reduction =
(

1 − Posterior97.5 − Posterior2.5
Prior��� − Prior���

)

× 100 (8)

A reduction in the range of the posterior distribution relative to the prior distribution indicates that assimilation 
of the provided data has provided some constraint on the range of parameter values. In contrast, no change to the 
posterior distribution relative to the prior distribution would indicate no reduction in uncertainty from assimila-
tion of the provided data.

2.4. Model Projections With Updated Parameter Estimates

For parameters that could be constrained through assimilation of respiration data, we assessed the potential im-
pacts of new parameter estimates on long-term model projections by comparing model outputs using posterior 
parameter estimates to model outputs estimated using default parameters. An annual seasonal cycle of tempera-
ture, moisture, and litterfall inputs was repeated for 100 years. Annual totals were calculated for respiration rates 
and annual means were calculated for pool sizes of SOC, SON, DOC, DON, microbial biomass C, and microbial 
biomass N. Annual estimates at median parameter settings and their uncertainties based on 2.5% and 97.5% pos-
terior parameter intervals were compared to annual estimates at default parameter settings and their uncertainties 
based on the range of prior distributions.

3. Results
3.1. Parameter Sensitivity

Model outputs are disproportionately sensitive to a few select parameters and largely insensitive to others (Fig-
ure 2). Calculated sensitivities, which reflect scaled changes in model outputs relative to scaled changes in model 
parameters from ±50% of their default values (Equation 6), ranged from 0 to 3.4 × 106. All model outputs are 
most sensitive to either the activation energy of depolymerization (Eadep) or the activation energy of uptake 
(Eaupt). In terms of output variables, the DOCN pool sizes and respiration rates show the highest mean sensitivity 
to variation in individual parameters, while microbial biomass pools have the lowest mean sensitivity. SOCN 
pool sizes are almost exclusively sensitive to Eadep, with sensitivities below 0.02 for all other parameters. The 
low sensitivity of SOCN pools to most kinetic and physiological parameters is amplified by the fact that only a 
small fraction of total SOCN is available for enzymatic activity due to chemical and physical protection (Magill 
et al., 2000). DOCN pool sizes show relatively high sensitivities for all parameters except Kmdep, which shows the 
lowest sensitivity across all model outputs. Microbial biomass pools are most sensitive to Eadep, Eaupt, CUE, and 
p. Respiration was most sensitive to Eaupt, due to near-zero rates of respiration resulting when Eaupt is raised above 
approximately 95 kJ mol−1. In contrast, respiration rates are nearly insensitive to the other uptake parameters.

3.2. Results of Assimilating Observed Respiration Data

Assimilating direct observations of seasonal heterotrophic respiration data from Harvard Forest resulted in large 
reductions in parameter uncertainty for Eadep, Eaupt, and CUE (Figures 3 and 4a, Table 2). Although respiration is 
sensitive to adep, this parameter does not show a reduction in uncertainty when provided with respiration data. The 
parameters used to define allocations of C and N to enzyme production (p and q) show reductions in uncertainty, 
but are highly skewed toward the maximum values allowed in the prior specification. Thus, assimilating respira-
tion data alone allowed for large reductions in parameter uncertainty for some of the most sensitive parameters 
(e.g., Eadep, Eaupt, and CUE), while most other parameters require additional data constraints as discussed below.
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3.3. Results of Parameter Estimation With Simulated Data

Using simulated respiration data with known parameter values was useful for corroborating the patterns observed 
with field measurements of respiration and identifying the potential for constraining parameter estimates with a 
more complete simulated respiration data set (i.e., one with no missing timepoints in contrast to the observational 
data set). Estimating parameters following assimilation of simulated respiration data with known, default parame-
ter values indicates that more complete respiration data alone can reliably reduce parameter uncertainty with high 
accuracy for Eadep, Eaupt, CUE, and q (Figure 4b). However, the remaining six parameters showed low accuracy 
and limited reductions in uncertainty, reinforcing the finding that reducing uncertainty in these parameters would 
require additional data sources.

Providing the model with simulated data on SOCN pool sizes only reduced uncertainty in Eadep, while other 
parameters showed mostly low reductions in uncertainty and inaccurate MAP values (Figure 4c). These observa-
tions are consistent with the strong sensitivity of SOCN pool sizes to Eadep (Figure 2). In contrast, assimilating 
data on DOCN pool sizes reduced parameter uncertainty for several parameters (KmO2, Eaupt, q, CUE, Eadep) with 
high accuracy (Figures 4d and 5). Microbial biomass data was primarily useful for reducing uncertainty in Eadep 
and the microbial physiological parameters q and CUE (Figure 4e).

Figure 2. Heatmap showing sensitivity of model outputs to parameters. Note. Sensitivities are calculated as proportional 
change in output (columns) relative to proportional change in parameter (rows; Equation 6). Final row shows mean sensitivity 
of model output across the 10 parameters of interest. Final column shows mean sensitivity across model outputs for each 
parameter individually. MIC C is microbial biomass C, MIC N is microbial biomass N, resp is respiration.
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Figure 3. Marginal parameter uncertainties following incorporation of observed respiration data. Note. Prior distributions 
(not shown) are uniform spanning the full range of x-axes.
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The most useful data set for constraining all three depolymerization parameters and all three physiological pa-
rameters was DOCN data (Figures 4d and 5). Parameters associated with uptake were the most challenging to 
constrain, with Kmupt largely unidentifiable by any provided data. While reductions in uncertainty in uptake 
parameters were relatively small regardless of data type provided, DOCN showed the greatest overall uncertainty 
reduction and accuracy.

3.4. Results of Model Projections With Updated Parameter Values

Incorporating parameter estimates for Eadep, Eaupt, and CUE based on assimilated respiration data results in major 
changes in estimates of specific pools and fluxes (Figure 6). For example, the posterior estimate for Eadep was 4% 
lower than the default parameter value (Table 2). Incorporating this relatively small decrease in parameter value 
resulted in large declines in SOCN stocks over time (Figure 6a), while other pools and fluxes equilibrate toward 
similar values. This reduction in Eadep represents a reduced barrier for SOCN depolymerization, which frees a 
larger fraction of the initial SOCN pool to be released as DOCN before eventually stabilizing. The increased 
availability of SOCN is temporarily associated with increases in DOCN and microbial biomass. Updating the 
parameter value for Eaupt based on the posterior median estimate (a 17% increase in parameter value; Table 2) 

Figure 4. Uncertainty reductions and accuracies for parameters estimated provided different types of data. Note. Percent 
difference between maximum a posteriori (MAP) estimate and default parameter values (red) and uncertainty reduction 
(green) for parameters when provided with (a) observed data for respiration, or simulated data for (b) respiration, (c) SOC 
and SON, (d) DOC and DON, (e) Microbial Biomass C and N. Dashed lines separate between parameter types for uptake, 
physiology, and depolymerization. Uncertainty reductions approaching 100% indicate narrowing of posterior distribution 
relative to prior distribution based on data provided. Percent differences approaching 0% indicate MAP values close to the 
true parameter value used to simulate data.
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results in large, sustained accumulations of DOCN (Figure 6b), with minimal impact on other models outputs. 
Updating CUE based on the posterior estimate (a 20% reduction in the parameter value; Table  2) results in 
sustained declines in microbial biomass, declining SOC stores due to reduced microbial inputs, and temporary 
increases in respiration, N mineralization, and DOC accumulation due to reduced uptake (Figure 6c).

Figure 4. Continued.
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Updating parameter values based on the assimilation of available respiration data not only impacts projections 
of C and N stocks, but also their associated uncertainties. For example, the assimilation of respiration data to 
update Eadep resulted in a large reduction of the credible interval surrounding estimates of both C (Figure 7) and 
N (Figure 8) stocks and fluxes compared to intervals based on broad prior distributions around the default values.

4. Discussion
Modeling coupled soil microbial C and N cycling is critical for understanding the drivers of soil organic matter 
sequestration, losses of C and N through mineralization, and their responses to global change. In particular, 
incorporating explicit representations of microbial physiology and extracellular enzyme activities has been help-
ful for developing biogeochemical models that are more representative of the underlying processes (Abramoff 
et al., 2017; Allison et al., 2010; Fatichi et al., 2019; Kyker-Snowman et al., 2020; Schimel & Weintraub, 2003; 
Wieder et al., 2013). A major challenge with modeling these processes involves accounting for multiple sources 
of uncertainty, and few studies explicitly account for the potential impacts of parameter uncertainty in particular 
when reporting model outputs. Furthermore, efforts to reduce model uncertainty can be improved with closer 
integration of data collection efforts with an analysis of the impact of available data on model performance (Xie 
et al., 2020).

We used the soil biogeochemical model DAMM-MCNiP to explore how parameters associated with the enzyme 
kinetics of depolymerization, microbial uptake of C and N, and microbial metabolism impact estimates of C and 
N cycling. We then used a Bayesian statistical approach to constrain parameter estimates through data assimila-
tion, and we identified specific parameters that could be constrained through existing respiration data alone. As 
several parameters required additional data constraints outside of the available respiration data, we used simu-
lated data to identify which additional data sets would be most useful targets for future data collection to reduce 
model parameter uncertainty. Lastly, we updated model parameters based on data assimilation and explored the 
potential impacts of these shifts in parameter values on long-term model projections.

4.1. Which Model Parameters Have the Greatest Impact on DAMM-MCNiP Model Outputs?

DAMM-MCNiP requires a total of 25 parameters, with 10 parameters involved in depolymerization, uptake and 
physiology specifically (Table 1). We focused our analyses on these parameters as they are some of the most 
challenging parameters to measure directly, in contrast to soil biophysical parameters (e.g., bulk density, stoichi-
ometries of soil organic matter, and plant litter) which are routinely measured. These parameters are associated 
with some of the most recent advancements in soil biogeochemical modeling, as they are related to the direct 
representation of enzyme-mediated decomposition and microbial metabolism (Allison et al., 2010; Manzoni & 
Porporato, 2009; Tang, 2015).

Parameter Posterior 2.50% Posterior median Posterior 97.5% Prior Lower Prior Upper

a dep 5.52 × 1010 9.53 × 1010 1.58 × 1011 5.40 × 1010 1.62 × 1011

a upt 6.07 × 1010 1.20 × 1011 1.60 × 1011 5.40 × 1010 1.62 × 1011

CUE 3.21E-01 0.35 0.40 0.16 0.47

Ea dep 59.3 60.6 61.9 30.9 92.7

Ea upt 32.8 69.6 72.0 30.9 92.7

Km dep 1.00 × 10−3 2.00 × 10−3 3.00 × 10−3 1.25 × 10−3 3.75 × 10−3

Km o2 6.30 × 10−2 0.11 0.18 6.05 × 10−2 0.18

Km upt 0.15 0.23 0.42 0.15 0.45

p 0.30 0.63 0.74 0.25 0.75

q 0.53 0.70 0.75 0.25 0.75

Note. Parameter estimates for all 10 parameters estimated together using field observations of heterotrophic respiration 
(100,000 iteration MCMC with three chains and burn-in of 1,000).

Table 2 
Parameter Estimates Given Field Observations of Heterotrophic Respiration
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Figure 5. Note. Marginal parameter uncertainties following incorporation of simulated DOC data. Prior distributions (not 
shown) are uniform spanning the full range of x-axes.
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Prioritizing efforts to constrain model parameter uncertainty should be guided in part by an assessment of which 
parameters have the largest impacts on model outputs of interest. In DAMM-MCNiP, model outputs are dis-
proportionately sensitive to the activation energies of depolymerization and uptake (Eadep, Eaupt), while other 
parameters, including the half-saturation constant of depolymerization (Kmdep) show minimal impact on C and N 
cycling (Figure 2). For example, holding temperature and moisture constant, but varying Kmdep by ±50% of its 
default value only alters estimated rates of depolymerization by 3%. Furthermore, depolymerization acts only on 
a small fraction of the total SOCN pools, based on the available fraction of unprotected soil organic matter and 
diffusion dictated by soil moisture. Therefore, the large stocks of total SOCN are essentially insensitive to this 
parameter in this model. In contrast, varying Eadep by ±50% of its default value leads to variation in depolymeri-
zation rates over several orders of magnitude, allowing this parameter to have detectable impacts on SOCN pool 
sizes.

Figure 6. Modeled outputs using MAP parameter estimates. Note. Ratio of model outputs over 100 yr projections using MAP values following incorporation of 
observed respiration data (FIT) relative to model outputs based on default parameter value (DEFAULT) for (a) Eadep, (b) Eaupt, and (c) CUE. Where the dotted line is 
not visible, it is plotted underneath the solid line.
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In DAMM-MCNiP, activation energies (Eadep, Eaupt) and the pre-exponential factors (adep, aupt) are used to calcu-
late the maximum reaction rates (Vmax) for depolymerization and uptake, which are both sensitive to tempera-
ture. In the context of global change, it is particularly important to constrain these enzyme kinetic parameters as 
they directly impact estimates of how SOCN stocks respond to warming (Allison et al., 2018). As Vmax increases 
exponentially in response to temperature, models parameterized according to this formulation predict positive 
feedbacks to warming. However, substrate supply can also limit reaction rates, resulting in observed rates that 
are below the predicted temperature-dependent Vmax. Indeed, if higher temperatures are accompanied by greater 
evapotranspiration and lower soil moisture, then the effect of substrate limitation (Equation 4) could offset the 
effect of temperature (Equation 5) on observed rates of decomposition. Climatic effects on plant inputs of soil C 
would also affect SOCN stocks, but are beyond the scope of this study. Collectively, these observations demon-
strate the importance of constraining enzyme kinetic parameters, and articulating the contributions of uncertain-
ties in Ea, Km, adep, and aupt to driving predictions in SOCN responses to global change.

Figure 7. Modeled C outputs with prior and posterior estimates of Eadep. Note. Model estimates of (a) annual total respiration, (b) mean SOC, (c) mean DOC, and (d) 
mean microbial biomass C based on posterior median parameter estimates for Eadep (solid orange) and 2.5%–97.5% credible interval for posterior parameter estimate 
(orange interval). Solid black line shows model estimate based on default parameter setting. Gray interval shows range of estimates using prior parameter distribution.
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4.2. Can the Assimilation of Existing Data Reduce Model Parameter Uncertainty, and What is the 
Impact of Reducing Parameter Uncertainty on Model Estimates?

In addition to analyzing the sensitivity of model outputs to variation in parameter settings, it is important to also 
pair these analyses with an assessment of parameter uncertainty. Focusing solely on parameter sensitivity can be 
misleading as highly sensitive, but tightly constrained parameters can potentially be smaller sources of uncertain-
ty to model estimates than less-sensitive, but poorly constrained parameters (Dietze et al., 2014). Assimilating 
field data on heterotrophic respiration was primarily useful for constraining three parameters (Eadep, Eaupt, CUE), 
while the remaining parameters were not reliably identifiable from respiration data alone (Figure 3). These pa-
rameters also had some of the largest impacts on modeled estimates of C and N. Thus, although respiration data 

Figure 8. Modeled N outputs with prior and posterior estimates of Eadep. Note. Model estimates of (a) annual total N 
mineralization, (b) mean SON, (c) mean DON, and (d) mean microbial biomass N based on posterior median parameter 
estimates for Eadep (solid blue) and 2.5%–97.5% credible interval for posterior parameter estimate (blue interval). Solid black 
line shows model estimate based on default parameter setting. Gray interval shows range of estimates using prior parameter 
distribution.
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alone could not constrain all parameters, it was associated with uncertainty reductions in some of the most critical 
parameters to constrain.

Microbial physiological parameters like CUE are among the most challenging to directly measure and represent 
in biogeochemical models due to the diversity of microbial metabolic processes and variation across microbial 
taxa and substrate chemistry (Saifuddin et al., 2019; Sinsabaugh et al., 2013). The capacity to reduce uncertainty 
in CUE through the assimilation of heterotrophic respiration data may reflect the view of CUE as an emergent 
property of several intersecting microbial processes (Hagerty et al., 2018). However, reducing uncertainty in this 
individual parameter is itself not sufficient for determining whether or not the particular structural representa-
tion of CUE in this model and other similar ones is a valid way to simplify multiple sources of variation in 
emergent CUE, which may be dependent on constituent processes including microbial assimilation efficiency, 
biomass-specific respiration, and enzyme production (Hagerty et al., 2018).

Parameter estimates identified through data assimilation were sometimes very different from default parameter 
settings currently used in the published model. Even small adjustments to these parameter choices, justified by 
reductions in uncertainty, could have major consequences for model projections (Figure 6) and their associated 
uncertainties (Figures 7 and 8). For example, assimilation of the respiration data supported a small reduction 
in Eadep by 4%. This minimal change in a single parameter resulted in increased rates of depolymerization and 
reduced SOCN stocks by over 50% within 30 yr compared to the default parameter simulation (Figure 6a). Note 
that this is simply a reflection of model sensitivity to decomposition parameter selection rather than a projection 
of future global change scenarios, in which SOCN stocks would depend also on other changes which may covary 
with these parameters such as changes in rates of gross primary productivity, for example. Additional constraints 
outside of the observed respiration data would be helpful in further reducing uncertainty in parameter estimation 
for Eadep and other parameters. While respiration was the only direct observational data available to us, using 
simulated data allowed us to identify the particular types of data for future collection with the greatest potential 
for reducing parameter uncertainty.

4.3. What Specific Types of Data Have the Potential to Reduce Model Parameter Uncertainty Most 
Effectively in DAMM-MCNiP?

As respiration data alone could not be used to constrain all model parameters, we explored which potential future 
data sources would be most useful for reducing parameter uncertainty in DAMM-MCNiP. We found that identi-
fying changes in DOCN pool sizes, particularly reflecting their availability at the site of microbial uptake, could 
reduce parameter uncertainty for most parameters (Figure 4d), while measuring SOCN pool sizes had limited 
utility (Figure 4c). DOCN pool sizes were also sensitive to variation in most parameters, in contrast to SOCN 
pool sizes which were relatively stable across parameter variation (Figure 2). We note that in the present version 
of DAMM-MCNiP, there is not a diffusivity function for DOCN to the enzyme reactive site as there is for the 
depolymerization step. Therefore, while bulk DOCN measurements alone may be useful, it is likely that modeling 
the diffusion of DOCN and hence DOCN concentrations at uptake sites is of equal, if not greater, importance to 
parameter estimation (Sihi et al., 2019).

DOCN pools are produced through depolymerization and consumed through uptake, placing them centrally in 
the model and making them directly responsive to both depolymerization and uptake parameters. Additionally, 
microbial physiological parameters indirectly impact DOCN pool sizes as the size of the microbial biomass pool 
impacts rates of uptake. Thus, due to their high connectedness and relatively small size compared to other pools 
and parameters in the model, DOCN data showed the greatest potential as a single source for constraining mul-
tiple parameters. While soil decomposition models differ in their specific representation of C and N pools, our 
analysis suggests that dynamic pools and fluxes that are located more centrally within model structures are most 
likely to constrain parameters and are a high-priority for data collection.

Classical decomposition models represent conceptual C pools with constant decay rates, which can be diffi-
cult to measure directly, in contrast to a growing trend of representing actual pools such as DOCN (Abramoff 
et al., 2018; Manzoni & Porporato, 2009; Robertson et al., 2019). DOCN is composed of amino acids, peptides, 
and other compounds which can be rapidly consumed by soil microorganisms as both C and N sources (Farrell 
et al., 2011, 2014; Finzi & Berthrong, 2005; Warren, 2014). A variety of methods exist for measuring this pool 
in the field, including in situ measurements through lysimetery or microdialysis (Currie et al., 1996; Inselsbacher 
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et al., 2011; Warren, 2014) making it possible to pair measurements of DOCN along with respiration measure-
ments for constraining model parameters in the future. Despite these opportunities, collecting data on DOCN 
pools at a comparable temporal scale to the respiration data used in this study is likely to remain challenging.

4.4. Implications for Modeling Soil Biogeochemistry

DAMM-MCNiP combines the effects of temperature, soil moisture and N on C cycling through the SOCN-mi-
crobial system. Several soil biogeochemical models share similar structures to DAMM-MCNiP, featuring mul-
tiple distinct soil C pools with transfers among pools mediated by microbially produced enzymes according to 
Michaelis-Menten type kinetics (Huang et al., 2018; Manzoni & Porporato, 2009; Tang & Riley, 2015; Wang 
et al., 2013). Thus, our findings related to uptake and depolymerization kinetic parameters and microbial physi-
ological parameters may have similar implications for models with shared core structures. However, it is critical 
to note that DAMM-MNCiP represents one of many potential model structural possibilities, and there exist many 
contrasting approaches to model structure that impact the function and interpretation of shared parameters (Fan 
et al., 2021; Kyker-Snowman et al., 2020; Sainte-Marie et al., 2021; Tang & Riley, 2020; Waring et al., 2020; 
Zhang et al., 2021).

Parameter estimation efforts in biogeochemical modeling have largely focused on aboveground processes, 
plant-related parameters, or simple decay rate constants for decomposition, while similar approaches in microbi-
ally explicit coupled C-N soil biogeochemical models are lagging (Luo et al., 2009). The assimilation of simulat-
ed data has previously been used to assess the identifiability of decay rate parameters in the two-pool Introductory 
Carbon Balance Model (ICBM; Luo et al., 2017) and initial pool sizes in the Rothamsted C model (Scharnagl 
et al., 2010). Both the ICBM and Rothhamsted C model lack a mechanistic representation of microbial processes, 
coupled C and N cycling, and enzyme-mediated depolymerization, making it necessary to extend these approach-
es to explore parameters in more recent soil biogeochemical models. Adopting a similar approach to the one 
explored here for DAMM-MCNiP will be critical to identifying the specific sources of parameter uncertainty and 
most promising opportunities for data collection to reduce parameter uncertainty in related soil biogeochemical 
models with different structures and parameters.

Current microbially explicit coupled C-N soil biogeochemical models predict widely divergent model projections 
in response to global change due to differences in structure and parameterization (Sulman et al., 2018; Wieder 
et al., 2017). A comparison of microbial biogeochemical models found that confronting conflicting models with a 
large synthesis of available data from field experiments on SOC responses to global change was unable to identify 
which models are most representative and also highlighted a consistent failure among models to predict certain 
empirical observations of increased SOC accumulation under warming (Sulman et al., 2018). These challenges 
indicate a need for more closely integrating data collection efforts with model development, both for model pa-
rameterization and model structural improvements.

Efforts on improving model representations of C and N cycling tend to focus on increasing model structural com-
plexity to include more realistic representations of microbial physiology and enzyme-mediated decomposition. 
These advancements have been critical for understanding the direct controls of enzyme activities on soil organic 
matter storage and depolymerization, as well as the role of microbial physiology in regulating C and N cycling; 
however, it is equally important to consider model uncertainties associated with parameterization. The present 
study explored sources of parameter uncertainty and opportunities for tailoring data collection toward reducing 
this uncertainty for one specific model structure; however, it would be necessary to use a similar approach to 
compare results and opportunities across various soil biogeochemical model structures. Improving our ability to 
model the interactions of soil microbial physiology, soil chemistry, enzyme activities, and environmental factors 
on C and N cycling and their responses to global change will require quantifying model uncertainties and closely 
integrating future data collection with model needs.

Data Availability Statement
The DAMM-MCNiP code developed in this manuscript is archived and publicly accessible in a GitHub reposi-
tory: https://github.com/rabramoff/DAMM-MCNiPv0. The C efflux measurements used in this study and related 
metadata can be accessed at the Harvard Forest Data Archive, a freely accessible online archive of measurements 

https://github.com/rabramoff/DAMM-MCNiPv0
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made at the Harvard Forest Long Term Ecological Research Site. The URL for the archive is: http://harvardforest.
fas.harvard.edu/harvard-forest-data-archive, and the ID for the data set is HF243-01.
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