
1. Introduction
Soil plays an important role in the global carbon cycle as it is the largest terrestrial carbon sink containing more 
carbon than the atmosphere and biosphere combined (Jobbágy & Jackson, 2000). The soil organic carbon (SOC) 
stock in the top 1 m has been estimated to be about 1,500 Pg C with considerable variations ranging from 504 
to 3,000 Pg across data products and estimates due to the differences in sampling period, intensity and spatial 
resolution of the soil profile databases, and differences in estimation approaches (Scharlemann et al., 2014; Tifafi 
et al., 2018). The size of SOC stock also depends on the soil depth, sampling to greater depths generally result 
in larger SOC stock estimation when deep carbon pools have been included particularly in the tundra and tropics 
(Jobbágy & Jackson, 2000; Page et al., 2011; Tarnocai et al., 2009). Soil carbon sequestration has been proposed 
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to mitigate global warming by off-setting part of the carbon dioxide emission from fossil fuel burning and cement 
production (Lal, 2004). In the USA, following the Growing Climate Solutions Act (S.1251), government and 
industry are in the process of trading soil-sequestered carbon as a commodity between farmers, ranchers, and 
corporations.

However, the potential of soil carbon sequestration in cropland and pasture may be overstated as the restoration 
of carbon may require increased fertilizer production and be accompanied by greenhouse gas emissions from 
irrigation, mining, and manure application (Amundson & Biardeau, 2018; Lugato et al., 2018; Schlesinger & 
Amundson, 2019). Moreover, protocols and management efforts providing this capability are highly dependent 
on the local climatic and edaphic conditions. To evaluate the feasibility and efficacy of soil carbon sequestration 
in different ecosystems, quantitative estimation and monitoring of SOC stocks and changes are required to back 
up the above-mentioned initiatives (Gurney & Shepson, 2021).

Previous studies have found that the input and output of SOC are influenced by human-induced changes including 
global climate change, land cover and land use change (LCLUC), and management activities such as forest harvest-
ing, cropland tillage, and pasture grazing (Erb et al., 2017; Smith et al., 2016; Sun et al., 2020; Tong et al., 2020). 
A large amount of SOC loss (more than 42% of the initial SOC pool) has been reported in agricultural ecosystems 
and wetlands of the USA due to intensive human activities (Lal, 1999; Nahlik & Fennessy, 2016). In contrast, 
substantial SOC gain has (13–21 Tg C year −1) been found in the USA forests after reforestation from croplands 
(Caspersen et al., 2000; Nave et al., 2018). Besides the human-induced changes, soil carbon sequestration could 
also be affected by soil properties such as texture and pore size, and soil forming factors that are used to define 
Soil Taxonomy (Huang & Hartemink, 2020; Kravchenko et  al.,  2019; Luo et  al.,  2021). Across eco-climatic 
domains, different soil types have different carbon sequestration potential determined by the balance of all the 
soil forming factors including climate, organic input, topography, parent material, and soil age (Jenny, 1994; 
Wiesmeier et al., 2012). Within the same eco-climatic domain, the SOC change in response to LCLUC may be 
dominantly controlled by the soil type-specific characteristics (e.g., the content and type of clays) (Wiesmeier 
et al., 2015). Importantly, studies suggest carbon sequestration potential largely depends on the proximity of a 
given soil to its carbon saturation, which is the upper limit of SOC storage affected by the capacity for mineral 
sorption at a given level of organic input (Six et al., 2002; Wiesmeier et al., 2014). Recently, a study based on 
1,144 globally distributed soil profiles showed a large undersaturation of mineral-associated carbon especially 
in the deep soil of agricultural ecosystems (Georgiou et al., 2022). Because SOC can still increase and be main-
tained to a new steady state when inputs are increased, carefully designed experiment studying a series of input 
versus carbon accrual in the same soil is needed to determine the carbon saturation. Therefore, knowledge gaps 
remain regarding the location, depth, and quantity of potential carbon sequestration across different eco-climatic 
regimes, land cover types, and soil types in the USA.

Over the last decades, various carbon cycle models have been developed to predict soil carbon cycle dynamics 
under different Intergovernmental Panel on Climate Change (IPCC) climate projections and investigate the effects 
of climate change and human activities on SOC change. Large SOC loss has been reported under projected climate 
change in the continental United States (CONUS), and soil internal factors (e.g., soil type and soil drainage) have 
been found to be important controls of SOC stock prediction (Gautam et  al.,  2022; Gonçalves et  al.,  2021). 
Recently, explicit microbial and mineral interactions have been incorporated into models that largely improve the 
prediction of carbon stocks and dynamics (Abramoff et al., 2022; Sulman et al., 2014; Wang et al., 2013; Wieder 
et al., 2014). Additionally, a few depth-explicit soil carbon cycle models (Ahrens et al., 2015, 2020; Braakhekke 
et al., 2011; Camino-Serrano et al., 2018; Nakhavali et al., 2021; Yu et al., 2020) have investigated physicochem-
ical processes like soil erosion and leaching. Despite their finding that a multi-layer representation of the soil 
profile significantly constrains the SOC stock estimation, most of the carbon cycle models primarily focus on the 
microbial-active topsoil, which often represents a depth of less than 30 cm. Furthermore, most models estimate 
SOC stock based on pre-determined depth increments which could be biased by the change in bulk density, differ-
ent thickness and pedogenic development of the specific diagnostic horizon among different soil types (Ellert & 
Bettany, 2011; Gifford & Roderick, 2003; Wendt & Hauser, 2013).

Carbon cycle models are often calibrated by controlled-environment lab experiments and/or long-term field moni-
toring data from eddy covariance flux towers, CO2 enrichment and warming experiments (McPartland et al., 2019; 
Wilson et al., 2016) but these observations are generally not distributed across different eco-climatic domains and 
different land cover types. Given these research gaps, this study applied the space-for-time substitution method to 
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field-based soil observations of the National Ecological Observatory Network (NEON) to estimate SOC change 
for different LCLUC scenarios over 30 years at the NEON soil plots. The goal of NEON was to sample across 
eco-climatic gradients relevant for answering questions about grand challenges in macrosystems ecology. We 
aim to estimate SOC change at the NEON sites, based on the existing design of NEON, to understand how soil 
carbon changes varies across eco-climatic gradients, to the extent that our method and NEON's predetermined 
soil sampling scheme allows us to. But we do not aim to extrapolate the SOC change estimation from NEON 
soil plots to the whole USA. Topsoil (A horizon) and subsoil (B horizon) SOC changes were calculated for each 
land-use change scenario while controlling for soil order and eco-climatic domain. Following the SOC change 
estimation using space-for-time substitution, Structural Equation Modeling was utilized to model the SOC spatial 
variation and to investigate the controls of environmental and soil internal factors on SOC change in low-SOC 
and high-SOC soils.

To the best of our knowledge, this study is the first continental-scale, long-term estimation of SOC change for 
both topsoil and subsoil in the USA. We address the following questions: (a) how has SOC changed over the past 
30 years under different land-use change scenarios across eco-climatic domains at NEON soil plots in the USA? 
(b) Within the same eco-climatic domain, which soil order has the largest SOC decrease/increase in response to 
LCLUC in topsoil and subsoil? (c) What are the driving factors controlling SOC variation across soil orders and 
depths?

Our hypotheses are: (a) SOC will increase under natural vegetation over 30 years but decrease under all scenarios 
of land-use change (e.g., converting natural vegetation into pasture or cropland) due to the reduced C inputs. 
(b) Younger soils (e.g., Inceptisols) in water-sufficient regions have a greater carbon sequestration potential 
compared to well-developed (e.g., Ultisols) and/or near carbon-saturated (e.g., Mollisols) soils in water-limited 
regions. (c) SOC variations are dominantly controlled by soil physicochemical properties and processes including 
soil pH, mineral sorption, and runoff and/or leaching.

2. Materials and Methods
We first introduce the study areas and the soil plots (Section 2.1) and the NEON soil data including the Soil 
Taxonomy and measurements of soil physiochemical properties at soil plots (Section 2.2). Then descriptions 
about the environmental datasets characterizing the climate (Section 2.3.1), plant functional type (Section 2.3.2), 
and topography (Section 2.3.3) at soil plots are presented. The method of LCLUC detection using remote sensing 
time series is described in Section 2.3.4. After determining the land cover subgroups of each soil plot based on the 
total number of detected LCLUC, the space-for-time substitution targeting soil-order- and horizon-specific SOC 
change estimation due to LCLUC is described in Section 2.4. Finally, the structural equation modeling approach 
exploring the controlling factors of SOC spatial variation across NEON sites is described in Section 2.5. The flow 
chart of our data analysis is shown in Figure 1.

2.1. Study Areas

NEON contains 20 eco-climatic domains that cover the contiguous USA, Alaska, Hawaii, and Puerto Rico 
(Figure 2). Boundaries of NEON domains were created by NEON staff from a combination of multivariate anal-
ysis and ecological expertise based on geographic and environmental similarity (Hargrove & Hoffman, 2004; 
Schimel et al., 2007). Each NEON domain generally consists of two to three terrestrial sites, and 10–26 soil plots 
were surveyed and sampled in each site (Nave et al., 2021). In this study, a total of 715 soil plots were retained that 
have measurements of soil physical and chemical properties for both topsoil (A horizon) and subsoil (B horizon).

2.2. Soil Data

Soil samples were collected by diagnostic horizon across all the NEON sites by NEON staff and NRCS between 
2015 and 2018. The soil samples collected from a total of 715 soil plots were used in this study. Later, the soil 
samples were grouped by the eco-climatic domain, soil order, and land-cover subgroup (Section 2.3.4) to conduct 
the SOC change estimation. A total of 85 (39 topsoil, 46 subsoil) grouped soils were retained, the mean value 
and standard deviation of the SOC for each grouped soil are provided in Data Set S1. For example, one of the 
85 grouped soil is A-D01-Inceptisol-R (the first row in Data Set S1), which contains eight topsoil samples of 
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Inceptisols collected from domain D01 with the land-cover subgroup of reference natural vegetation. We assumed 
that SOC content remained unchanged during the sampling period (3 years) but will have changed over 30 years 
due to LCLUC. Soil data used in this study contain Soil Taxonomy description, soil particle size fractions (silt, 
sand, and clay content), soil organic carbon (SOC), bulk density (Db), pH, and cation exchange capacity (CEC). 
All the soils were analyzed at the Kellogg Soil Survey Laboratory in Lincoln, NE (Soil Survey Staff, 2014). 
Because soil samples were taken by each diagnostic horizon, soil properties at different horizons were aggregated 

Figure 2. NEON Terrestrial Field Sites Map. List of terrestrial field sites with coordinates acquired from the NEON website (https://www.neonscience.org/field-sites/
explore-field-sites).

Figure 1. Flow chart of the data analysis.
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by their master horizon (A and B) by weighted averaging based on the corresponding thickness of the soil layer. 
The thickness of A horizon samples ranges between 3 and 94 cm and the thickness of B horizon samples ranges 
between 7 and 187 cm depending on the soil type. Details about laboratory analyses are given in Text S1 in 
Supporting Information S1. Statistical summary about the thickness and bulk density of A and B horizon for the 
soil plots classified into each land-cover subgroup (Section 2.3.4) were provided in Data Set S2.

2.3. Environmental Datasets

A combination of ground observations and laboratory analysis of soil and vegetation properties with remote 
sensing data products were used to characterize the site information and soil variabilities. Details of the ancillary 
datasets and the distribution of environmental variables at NEON domains were given in Supporting Informa-
tion S1 (Table S1 and Text S2).

2.3.1. Climate and Net Primary Production Data

Minimal and maximal annual temperature and mean annual precipitation were calculated from the TerraClimate 
data set (Abatzoglou et al., 2018) with a temporal coverage from 1984 to 2014 and a 4.6-km spatial resolution. 
NPP (net primary production) product from Landsat was also extracted at the NEON soil plots within CONUS. 
The climatic and NPP data were extracted to the pixels where the soil plots were located. The time period and 
length was selected to cover the duration of Landsat missions (see Section 2.3.4) and represent environmental 
conditions before soil samples were collected from the NEON sites (see Section 2.2). These climate records were 
used to characterize the climatic gradients across the soil study plots and used as covariates in the Structural 
Equation Model (SEM) (Grace, 2006) to quantitatively investigate the influence of climate variables on SOC 
variation (see details in Section 2.5). The distribution of climatic variables and NPP for the studied soil plots is 
provided in Supporting Information S1 (Figure S1).

2.3.2. MODIS Land Cover Product

The global and yearly MODIS Land Cover product (MCD12Q1 V006) (Friedl & Sulla-Menashe, 2019) for the 
year 2015 was processed to characterize the plant functional type of each eco-climatic domain by extracting the 
pixel value of each soil plot (1 m × 1 m) within a specific domain and summarizing the plant functional types that 
appeared in that domain. The product has a pixel resolution of 500 m. It consists of 12 different plant functional 
types ranging from Evergreen Needleleaf Trees, Deciduous Broadleaf Trees, Shrub, Croplands, to Permanent 
Snow and Ice.

2.3.3. National Elevation Data Set

The 1/3rd arc-second (∼10 m) Digital Elevation Models (DEM) provided by USGS (2020) were downloaded 
as the original DEM for the NEON sites and then processed using the System for Automated Geoscientific 
Analyses-Geographic Information System (SAGA-GIS) (Conrad et  al.,  2015) to derive 14 terrain parameters 
including slope, aspect, and topographic position index (TPI). These 14 parameters along with the original DEM 
were used to represent the local topography for our study sites.

2.3.4. Landsat Surface Reflectance and Land Change Detection

Remote sensing data archives acquired by Landsat 5, 7, and 8 satellites (Wulder et al., 2016) were extracted on 
NEON soil plots over a continuous period of 1984–2014 from the Google Earth Engine (GEE) platform (Gorelick 
et al., 2017). Landsat Collection 1.0 Tier 1 level-2 surface reflectance data were used as the major remote sensing 
input. The advantage of using surface reflectance data from GEE is that they have previously been atmospheri-
cally corrected and also pre-processed by masking clouds, shadows, water, and snow (Foga et al., 2017; Schmidt 
et al., 2013; Vermote et al., 2018; Zhu & Woodcock, 2012; Zhu et al., 2015). Given the limited lifespan of the 
Landsat missions, we limited our study to this time frame to quantify the total number of LCLUC during this 
period (1984–2014) before the start of soil data collection in the year 2015 (NEON, 2020).

After acquiring the Landsat surface reflectance time series for each soil plot, the Continuous Change Detection 
and Classification (CCDC) algorithm implemented on GEE was used to detect the time and number of LCLUC 
over 1984–2014 (Zhu & Woodcock, 2014; Zhu et al., 2015). Essentially this algorithm utilized all the spectral 
bands of the Landsat time series and modeled the dynamics of surface reflectance by fitting the long-term trend. 
The seasonal variations of surface reflectance caused by vegetation phenology and solar angle difference were 
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modeled and removed by the harmonic time series thus only the “breakpoint” where LCLUC occurred would 
be picked up. By setting the chi-square change probability as 0.99 and the consecutive number of observations 
required to flag a change or breakpoint as 3, only an abrupt change of land surface (e.g., deforestation, agricul-
tural expansion and intensification, floods, and fire) between two stable land cover segments was recognized 
as a breakpoint. Spectral bands of B1-5 and B7 in Landsat 5 TM and Landsat 7 ETM+, and B2-7 in Landsat 8 
OLI have been specified with the “breakpointBands” argument as input due to their consistent wavelengths, and 
later used for breakpoint detection of the continuous collection of images. The number of breakpoints/LCLUC 
detected by the CCDC algorithm over 30 years in addition to the current land cover type were then used to parti-
tion the NEON soil plots into six land-cover subgroups for each soil order within the same eco-climatic domain. 
Among them are reference (R) and disturbed reference (R-d) in natural ecosystems, moderately disturbed (P-1) 
and intensively disturbed pastures (P-2), and moderately disturbed (C-1) and intensively disturbed croplands 
(C-2). Soil plots classified as R-d, P-2, and C-2 have a larger number of breakpoints compared to R, P-1, and C-1, 
respectively. Details about the land-cover subgroups and their distribution in each domain can be found in Tables 
S2 and S3, Text S3, and Figure S2 in Supporting Information S1.

We used the CCDC algorithm to compare the reference (R) soil versus changed (R-d, P-1, P-2, C-1, C-2) soil 
instead of detecting the magnitude of land use change. More field survey data covering different levels of land 
use change need to be collected to fully understand the effect of the magnitude of land use change on SOC. Mean-
while, a sensitivity analysis of the CCDC algorithm was performed and provided in Supporting Information S1 
(Text S4, Figures S3, and S4). The patterns of SOC change based on the sensitivity analysis were comparable 
when different parameters (e.g., chi-square change probability, consecutive number of observations required to 
flag a breakpoint) values of the CCDC algorithm were used, suggesting the land-cover subgroup classification 
generated from CCDC was reliable.

2.4. Space-For-Time Substitution

The space-for-time substitution method was employed to study the effects of LCLUC on SOC change due to 
the lack of long-term co-located observations of SOC contents across the USA. This method assumes that the 
drivers of spatial gradients of a variable (e.g., biodiversity, SOC) also drive temporal changes in that variable 
(Blois et al., 2013; Pickett, 1989). It is commonly used in ecological studies and has been applied to map temporal 
changes of SOC and study the driving factors of SOC change based on empirical models (Adhikari et al., 2019; 
Bonfatti et al., 2016; Tugel et al., 2005; Waring et al., 2014).

We assume that, for a specific soil (same soil order and horizon) within the same eco-climatic domain, the differ-
ence in the mean SOC concentrations between the reference (R) and the five disturbed land-cover subgroups 
(R-d, P-1, P-2, C-1, C-2) in 2015 is equal to the SOC concentration change over 30 years under five land-use 
change scenarios. Although there could be over- and/or under-estimation of the SOC change, we are trying to 
provide a baseline trend of the SOC change under different LCLUC scenarios, of which we believe the direction 
of most SOC change estimations would not be altered. The five land-use change scenarios are R being converted 
into (a) R-d, (b) P-1, (c) P-2, (d) C-1, and (e) C-2 in 1984, respectively. Thus mean SOC concentrations (g C kg −1) 
were first calculated for each soil order and horizon under different land-cover subgroups within each domain. 
Those SOC concentrations aggregated with a sample size of less than 4 were considered not representative of the 
specific soil and thus excluded. Then the difference in the mean SOC concentrations between the reference and 
the specific disturbed land-cover subgroups was taken as the absolute SOC change for the corresponding land-
use change scenario. Although the 715 soil plots were sampled from 20 NEON eco-climatic domains, several 
domains ended up with insufficient (<4) soil plots classified into the reference and/or disturbed states which are 
essential for SOC change estimation, leading to a total of 16 domains with SOC change estimates shown in the 
results. The statistical significance of each SOC change estimate was also analyzed from a t-test to see whether a 
significant difference existed in the mean SOC concentrations between the reference and the disturbed land-cover 
subgroups. We also calculated the relative SOC change in percentage as the ratio of the absolute SOC change to 
the mean SOC concentration in the reference to exclude the effect of initial SOC concentration. To visualize the 
spatial pattern of SOC change at NEON sites, the absolute and relative SOC change for a specific soil under a 
specific land-use change scenario was represented as a circle drawn onto each eco-climatic domain. The latitude 
and longitude of each circle is the average of all the soil profiles used for the SOC change calculation. Circles in 
D02 Mid Atlantic, D06 Prairie Peninsula, and D08 Ozarks Complex have been moved to avoid overlapping while 
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remaining in the same domain. Additionally, the SOC change rates (g C kg −1 year −1) over 30-year period were 
further calculated by dividing the absolute SOC change by 30. Finally, the SOC change values were compared 
across soil orders, eco-climatic domains, and LCLUC scenarios to investigate which soil, environment, and 
LCLUC scenario has more carbon accrual or carbon loss. Tukey mean statistical test (Driscoll, 1996) was used 
to account for the effect of sample size when comparing the SOC change values across different soil orders 
and  eco-climatic domains.

2.5. Structural Equation Modeling

Structural Equation Modeling (SEM) is a methodology for developing and testing hypotheses about relationships 
in a system that encompasses different statistical tools for causal analysis (Eisenhauer et al., 2015). The path 
diagrams of SEM have been used to represent the cause-effect network (Grace, 2006). In this study, we applied 
SEM to systematically quantify the interrelationships between both edaphic and environmental factors with SOC 
measured in topsoil (A horizon) and subsoil (B horizon) using the R package “lavaan” (Rosseel, 2012). We first 
developed the conceptual SEM model based on the soil forming factors that could affect SOC, then calibrated it 
using the measured SOC, soil physiochemical properties and environmental data.

The conceptual SEM model (Figure S5 in Supporting Information S1) consists of 9 latent variables. Similar to 
the dependent variables in regression models, the two endogenous latent variables are measured SOC in topsoil 
and subsoil. The seven exogenous latent variables are grouped as three environmental factors—litter, heat, runoff/
erosion and leaching potential, and four edaphic factors—mineral sorption in topsoil and subsoil, and pH in 
topsoil and subsoil. The litter input was based on multi-year average NPP reflecting the long-term land use, the 
heat factor (surface energy balance and evaporative demand) was represented by five observed variables—solar 
radiance, potential evapotranspiration, minimum and maximum annual temperatures, and vapor pressure deficit. 
Precipitation, topographic position index, and segment/break numbers of LCLUC were used in the model to 
characterize the runoff/erosion and leaching potential factor. The mineral sorption factor was calculated based on 
the ratio of clay content to cation exchange capacity (CEC). The latent variables of pH in topsoil and subsoil were 
depicted by measured soil pH in topsoil and subsoil, respectively.

The ratio of clay content to cation exchange capacity has been used as a surrogate for mineral sorption when 
detailed information for clay mineral composition is not available (Bloesch, 2012; Pearring, 1968). The clay 
activity or ability to absorb organic carbon per unit of clay could better represent the effect of mineral sorptions 
on SOC dynamics compared to the clay content alone. Previous studies have found this surrogate to be more 
accurate in soils with low SOC content as SOM also contributes to the increase of CEC in soils with high SOC 
content (Eldridge, 2003). To separate the contribution of SOM and clay sorption to this ratio, we built two SEM 
models for NEON soil plots, one with low SOC and the other with high SOC.

3. Results
3.1. SOC Changes at NEON

The SOC change estimation was made for the NEON soil study plots under different LCLUC scenarios where soil 
plots with natural vegetation without LCLUC were converted to those with managed land-cover types. Noting that 
results in this study should not be directly extrapolated to the rest of USA where samples have not been collected. 
Figure  3 illustrates the absolute and relative SOC change maps over 30  years in topsoil and subsoil (details 
provided in Tables S4 and S5 in Supporting Information S1). Significant (p value < 0.05 from t-test) SOC change 
estimations have been denoted with asterisks next to the underlined labels. In general, there is large carbon loss 
in both topsoil and subsoil. All the significant SOC change values showed carbon loss, including three Mollisols 
and one Ultisols in cropland in the topsoil, and two Mollisols in cropland and one Inceptisols in a natural ecosys-
tem in the subsoil. Uncertainty exists in the SOC change results as the rest of the SOC change estimates were not 
statistically significant. The uncertainty was largely attributed to the NEON sampling design where most of the 
terrestrial sites are located in natural ecosystems with a limited effect of LCLUC on SOC change. Specifically, 
a potential SOC increase without a statistical significance in Alaska subsoil was discussed in Supporting Infor-
mation S1 (Text S5). Among the 16 domains with SOC change estimates, only six of them have soils sampled in 
managed ecosystems with an accepted sample size (≥4) (Figure S2 in Supporting Information S1). Nonetheless, 
our analysis in general suggests decreasing trend of SOC and revealed statistical uncertainty associated with 
imbalanced sampling design which needs to be considered when designing carbon monitoring systems.
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The absolute SOC changes in topsoil between 1984 and 2014 ranged from −30.1 g C kg −1 (−1.8 Mg C ha −1 year −1) 
to +14.9 g C kg −1 (+1.2 Mg C ha −1 year −1) with a median of −6.0 g C kg −1 (−0.3 Mg C ha −1 year −1). Although 
not all the estimates have statistical significance, a trend of SOC decrease occurred in the mid-latitude regions 
including disturbed croplands (Ultisols, Mollisols) and pastures (Alfisols) in the eastern domains and disturbed 
natural vegetation (Andisols, Inceptisols) in the western domains. In comparison, SOC gains were identified in 
water-sufficient eastern domains in Spodosols and Inceptisols under disturbed natural vegetation (R-d).

Compared to the topsoil, the absolute SOC change in subsoil shifted toward carbon gain ranging from 
−7.8 g C kg −1 (−3.7 Mg C ha −1 year −1) to +27.5 g C kg −1 (+2.7 Mg C ha −1 year −1) with a median of −0.7 g C kg −1 
(−0.3 Mg C ha −1 year −1). Large SOC gains were found in Gelisols in D18 Tundra and Inceptisols in D19 Taiga 
in Alaska in the land-use change scenario from the reference (R) to disturbed natural vegetation (R-d). However, 
the changes were not statistically significant due to limited sample size and large spatial heterogeneity in Alaskan 
soils as revealed by the NRCS data archive (data not shown). The relative change of SOC ranged from −64% to 
+60% in topsoil and −52% to +72% in subsoil with similar patterns compared to the absolute change of SOC.

3.2. Across-Domain SOC Changes

Inceptisols, Ultisols, and Mollisols have SOC change estimates in more than one domain. The absolute and 
relative change in SOC of Inceptisols and Ultisols across domains are given in Table 1 in the land use change 
scenario from the reference (R) to the disturbed reference (R-d) under natural vegetation, and for Mollisols in 
Table 2 in the land use change scenario converting natural vegetation (R or R-d) to intensively disturbed cropland 

Figure 3. SOC absolute change in topsoil (a) and subsoil (b) (g C kg −1) and relative change in topsoil (c) and subsoil (d) (%) at NEON sites. Blue circles refer to SOC 
increase, red circles refer to SOC decrease. The first two letters of the label are for the soil order (Al—Alfisols, An—Andisols, Ar—Aridisols, Ge—Gelisols, In—
Inceptisols, Mo—Mollisols, Sp—Spodosols, Ul—Ultisols), the last two letters of the label describe the land use change scenario (R-d—reference to disturbed natural 
vegetation, P-2—reference/disturbed reference to intensively disturbed pasture, C-1—reference/disturbed reference to disturbed cropland, C-2—reference/disturbed 
reference to intensively disturbed cropland). Notes: Absence of SOC change in topsoil due to limited (<4) topsoil data for soil plots classified as a reference and/or 
disturbed land-cover subgroup in Alaska. *p < 0.05, **p < 0.01, ***p < 0.001.
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(C-2) under agricultural management. Complete lists of SOC change in other soil orders under different land use 
change scenarios are shown in Tables S4/S5 in Supporting Information S1 but not presented here since they do 
not have SOC change estimates in more than one domain for cross-domain comparison.

In topsoils of Inceptisol, the largest SOC increase was found in D01 Northeast and the largest SOC decrease was 
found in D13 Southern Rockies and Colorado Plateau (Table 1). As for the subsoil, the largest SOC increase 
was +6.2 g C kg −1 (+1.0 Mg C ha −1 year −1) in D19 Taiga, whereas the largest SOC decrease (−4.9 g C kg −1, 
–0.9 Mg C ha −1 year −1) in subsoil was found in D07 Appalachian and Cumberland Plateau.

For Ultisol topsoils, SOC had the largest increase in D03 Southeast but decreased the most in D08 Ozarks 
Complex. In the subsoil, SOC slightly increased in D08 Ozarks Complex but decreased in D07 Appalachian and 
Cumberland Plateau.

Inceptisols and Ultisols showed opposite SOC changes in D08 Ozarks Complex regarding different horizons, 
whereas SOC tended to decrease in D07 Appalachian and Cumberland Plateau regardless of soil orders and 

Table 1 
Soil Organic Carbon (SOC) Change and Rate of Change for Inceptisols and Ultisols Across Domains Under the Land-Use Change Scenario of Converting Natural 
Vegetation to Disturbed Natural Vegetation (R to R-D)

Soil order Domain ID Domain name n SOCabs g C kg −1 SOCrela % NPP g C m −2 MAP mm Tmin °C Tmax °C PFT

Inceptisols A horizon

 D01 Northeast 6 14.4 b 29 a 762.7 b 1156 b −12 c 27 a DBT

 D08 Ozarks Complex 11 5.0 ab 20 a 741.1 b 1432 a 1 b 34 b DBT

 D11 Southern Plains 8 0.8 ab 5 a 248.3 c 724 c −4 a 36 b Grass

 D07 Appalachian and Cumberland Plateau 9 −11.2 ab −16 a 922.1 a 1292 ab −5 a 29 a DBT

 D13 Southern Rockies and Colorado Plateau 5 −30.1 a −49 a 222.3 c 437 d −12 c 28 a Grass and 
ENT

B horizon

 D19 Taiga 24 6.2 b 59 b - 306 e −25 d 21 d ENT and 
DBT

 D01 Northeast 7 2.6 ab 37 ab 797.4 b 1152 f −12 c 27 ac DBT

 D11 Southern Plains 8 1.9 ab 22 ab 248.3 c 724 c −4 a 36 b Grass

 D13 Southern Rockies and Colorado Plateau 7 0.7 ab 11 ab 293.1 c 475 d −13 c 26 c Grass and 
ENT

 D08 Ozarks Complex 11 −2.6 a −26 ab 741.1 b 1432 b 1 b 34 b DBT

 D07 Appalachian and Cumberland Plateau 12 −4.9 a −33 a 906.2 a 1291 a −5 a 29 a DBT

Ultisols A horizon

 D03 Southeast 19 7.6 a 44 a 691.0 a 1294 a 3 a 34 a DBT and 
EBT

 D02 Mid-Atlantic 15 −3.6 ab −13 b 799.7 b 1076 d −4 b 31 c DBT

 D07 Appalachian and Cumberland Plateau 14 −6.0 b −14 b 838.7 b 1244 b −4 b 30 b DBT

 D08 Ozarks Complex 25 −11.6 b −33 b 713.4 a 1363 c 0 c 33 a DBT

B horizon

 D08 Ozarks Complex 24 0.9 a 21 a 708.9 a 1360 b 0 c 33 a DBT

 D03 Southeast 14 0.8 a 43 a 700.0 a 1294 a 3 a 34 a DBT and 
EBT

 D02 Mid-Atlantic 15 0.3 a 11 a 799.7 b 1076 c −5 b 31 c DBT

 D07 Appalachian and Cumberland Plateau 16 −1.2 a −15 a 834.6 b 1254 a −4 b 30 b DBT

Note. SOCabs—absolute change of soil organic carbon, SOCrela—relative change rate of soil organic carbon, SOCmean—mean value of soil organic carbon, NPP—net 
primary production, MAP—mean annual precipitation, Tmin—annual average minimum temperature, Tmax—annual average maximum temperature, PFT—the dominant 
plant functional type, DBT—Deciduous Broadleaf Trees, ENT—Evergreen Needleleaf Trees, EBT—Evergreen Broadleaf Trees. The superscript letters above values 
represent the result of the Tukey test for pairwise mean comparisons, different letters represent the means differ significantly (p < 0.05) between the pair.
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horizons. Under the same land use change scenario from reference (R) to disturbed reference (R-d), both Incepti-
sols and Ultisols have either increased or decreased SOC in topsoil and subsoil, while weakly developed, young 
soils (Inceptisols) have a larger magnitude of SOC change compared to fully-developed, mature soils (Ultisols), 
indicating a greater potential of soil carbon sequestration in Inceptisols.

In contrast with Inceptisols and Ultisols that have SOC change estimates in more than three different domains, 
Mollisols in the land use change scenario from natural vegetation to cropland were only identified in two domains 
(Table 2) due to the NEON sampling design where most of the terrestrial sites are located in natural ecosystems. 
The SOC was moderately increased in both topsoil and subsoil in D10 Central Plains but substantially decreased 
in topsoil and subsoil in D06 Prairie Peninsula.

3.3. Within-Domain SOC Changes

A comparison of SOC change between Ultisols and other soils (Alfisols, Inceptisols, and Spodosols) within the 
same domain in the land use change scenario from the reference (R) to the disturbed natural vegetation (R-d) is 
given in Table 3. Only the results with statistical significance were included. Ultisols decreased in topsoil SOC 
across all domains except D03 Southeast, and SOC either decreased or remained unchanged (SOC absolute 
change <+1 g C kg −1) in the subsoil. In contrast, other soil orders such as Alfisols and Inceptisols have increased 
SOC in topsoil but not subsoil. Regardless of the direction of SOC change (increase or decrease), fully-developed 
Ultisols showed a smaller magnitude of SOC change in concentration compared with other soil types within the 
same eco-climatic domain and land use change scenario.

3.4. SEM Results for NEON Soil Plots

Two SEM models were built for NEON soil plots with low SOC and high SOC, respectively. As shown in Figure 4, 
the orange lines with arrows demonstrate the path starting from exogeneous variables pointing toward endoge-
nous variables. Solid arrows represent positive paths and dashed arrows represent negative paths. The thickness 
of the arrows reflects the magnitude of the standardized path coefficients. Non-significant paths (P > 0.05) were 
excluded and not shown. The numbers adjacent to the paths were the path coefficient of different environmental 
and edaphic factors. Each path coefficient quantifies the effect of that specific factor on SOC variation across soil 
plots in the given model.

Both models showed a significant effect of mineral sorption on the SOC variation across studied soil plots. 
Within each model, the sorption effect in the subsoil was greater than that in the topsoil. Specifically, the sorption 
effect had a coefficient of 0.33 in the subsoil and 0.11 in the topsoil for the low-SOC model (Figure 4a). While for 
the high-SOC model (Figure 4b), the sorption effect coefficients were 0.48 in the subsoil and 0.25 in the topsoil.

For the low-SOC model (Figure 4a), runoff and/or leaching had the most dominant effect on the subsoil SOC 
variation with the largest coefficient of 0.59. In addition, the topsoil SOC itself also had a significant effect on 

Table 2 
Soil Organic Carbon (SOC) Change Rate for Mollisols Across Domains Under Land Use Change Scenario of Converting Natural Vegetation or Disturbed Natural 
Vegetation to Cropland (R/R-D to C-2)

Soil order Domain ID Domain name n SOCabs g/kg SOCrela % NPP g C m −2 MAP mm Tmin °C Tmax °C PFT

Mollisols A horizon

D10 Central Plains 5 1.1*** 11*** 440.4*** 428*** −11*** 32*** Grass

D06 Prairie Peninsula 11 −25.6*** −59*** 664.3*** 885*** −9*** 33*** Grass and 
Cereal 
Croplands

B horizon

D10 Central Plains 5 2.8*** 75*** Same as above

D06 Prairie Peninsula 11 −7.8*** −52***

Note. SOCabs—absolute change of soil organic carbon, SOCrela—relative change rate of soil organic carbon, SOCmean—mean value of soil organic carbon, NPP—net 
primary production, MAP—mean annual precipitation, Tmin—annual average minimum temperature, Tmax—annual average maximum temperature, PFT—the dominant 
plant functional type, DBT—Deciduous Broadleaf Trees, ENT—Evergreen Needleleaf Trees, EBT—Evergreen Broadleaf Trees. *p < 0.05, **p < 0.01, ***p < 0.001.
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the subsoil SOC. In contrast, runoff and/or leaching did not influence the SOC variation significantly in the high-
SOC model (Figure 4b).

4. Discussions
4.1. Constraints of Carbon Sequestration at the NEON Sites

4.1.1. Limited Carbon Sequestration Potential in Cropland and Pasture

Cropland and pasture without good management and/or land recovery have limited carbon sequestration potential 
because of the low plant diversity, frequent harvest and grazing, and intense soil compaction and erosion which 
fundamentally deprives the soil of carbon input (Lal, 2003; Post & Kwon, 2000; Yang et al., 2019). Under the 
land-use change scenario of converting natural vegetation to managed ecosystems, carbon sequestration indicated 
by positive SOC change estimate was only observed in D10 Central Plains possibly due to improved management 
in the cropland. No-till management in croplands has been introduced since 1985 at the NEON STER (North 
Sterling) terrestrial site in D10, which could lead to SOC increase compared to conventional tillage. More impor-
tantly, greater inputs from the vegetation because of improved management such as fertilization and irrigation 

Table 3 
Comparison of Soil Organic Carbon (SOC) Change Between Ultisols, Alfisols, Spodosols, and Inceptisols Within the Same Domain Under the Land Use Change 
Scenario of Converting Natural Vegetation to Disturbed Natural Vegetation (R to R-D)

Domain Soil order n SOCabs g/kg SOCrela % NPP g C m −2 DEM m Sand % Silt % Clay %
CEC cmol (+)/

kg pH
Db g/
cm 3

D02 Mid-Atlantic A horizon

Alfisols 8 6.0 13 732.5 340*** 18*** 55*** 27*** 20* 5.7* 1.3

Ultisols 15 −3.6 −13 799.7 50*** 48*** 36*** 16*** 13* 5.0* 1.4

B horizon

Alfisols 8 −1.7* −26* 732.5 340*** 15*** 44** 41** 11 5.5* 1.5**

Ultisols 15 0.3* 11* 799.7 50*** 43*** 29** 28** 14 4.9* 1.6**

D03 Southeast A horizon

Spodosols 7 14.9 60 600.8* 22*** 93*** 5*** 1*** 10 4.0*** 1.4

Ultisols 19 7.6 44 691.0* 41*** 82*** 13*** 5*** 7 5.3*** 1.5

B horizon

Spodosols 6 −2.9* −14 600.8* 23*** 94*** 4*** 2*** 7** 4.0*** 1.5

Ultisols 14 0.8* 43 691.0* 41*** 67*** 12*** 20*** 3** 5.5*** 1.6

D07 Appalachian and 
Cumberland Plateau

A horizon

Inceptisols 9 −11.2 −16 922.1* 558 43 38 19 18* 4.6 1.1

Ultisols 14 −6.0 −14 838.7* 452 38 43 20 14* 4.9 1.1

B horizon

Inceptisols 9 −4.9* −33 922.1* 558 40 40 20* 10 4.8 1.4**

Ultisols 14 −1.2* −15 838.7* 452 32 39 29* 9 4.7 1.5**

D08 Ozarks Complex A horizon

Inceptisols 11 5.0** 20* 741.1 17*** 19 40 41** 29*** 5.3 1.5

Ultisols 25 −11.6** −33* 713.4 51*** 34 39 27** 15*** 5.2 1.4

B horizon

Inceptisols 11 −2.6*** −26* 741.1 17*** 30 33 37 21* 5.0 1.6

Ultisols 24 0.9*** 21* 713.4 51*** 30 37 32 12* 5.3 1.5

Note. SOCabs—absolute change of soil organic carbon, SOCrela—relative change rate of soil organic carbon, SOCmean—mean value of soil organic carbon, DEM—digital 
elevation model, CEC—cation exchange capacity, TPI—topographic position index, Db—bulk density, NPP (net primary production) was estimated from Landsat data, 
used here for illustration. Due to the lack of oven-dried bulk density in D03 from the NEON data set, bulk density data from SoilGrids 2.0 was used and presented for 
D03 soils here. *p < 0.05, **p < 0.01, ***p < 0.001.
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may contribute to the SOC accrual in the cropland compared to the natural system. All other cropland (Mollisols 
in D06, Ultisols in D02) and pasture soils (Alfisols in D02) showed large amounts of SOC loss in both topsoil 
and subsoil.

Improved management such as cover crops, rotation, and residue return may reduce the SOC loss in cropland and 
pasture but would not always turn the SOC loss into a SOC gain especially when the soil is near carbon saturation 
(Guillaume et al., 2022; Six et al., 2002; Stewart et al., 2007). For instance, a long-term cropping system trial from 
silt loam Mollisols in the North Central USA failed to sequester additional carbon from 29 years of improved 
management practices including reduced tillage, diversified crop rotations with cover crops and legumes, and 
manure addition (Rui et al., 2022; Sanford et al., 2012). The soils (0–15 cm) had initially 31 g C kg −1 at the onset 
of their study, almost triple the size of the topsoil SOC concentration for reference state Mollisols (10.5 g C kg −1) 
in D10 Central Plains in our study, suggesting our soils in D10 may be far from carbon saturation. Another study 
of long-term SOC dynamics conducted in Switzerland also found the initial SOC concentration to be the domi-
nant variable explaining the SOC change rates, and the SOC accumulation rates decrease with increased initial 
SOC concentration in temperate cropland-grassland systems (Guillaume et al., 2021). Although previous studies 
have also reported that soils have higher relative carbon sequestration rates with lower initial carbon contents, it 
has not been tested across eco-climatic domains at a large scale, and the observations tend to be limited in the top 
30 cm of the soil profile (Tan & Lal, 2005; Tan et al., 2004).

SOC sequestration in managed ecosystems was only estimated in D10 Mollisols in our study with low carbon 
stock after 30 years of improved cultivation. Moreover, increasing fertilization, irrigation, and manure appli-
cation contribute to the increasing emission of greenhouse gases from management activities (Schlesinger & 
Amundson, 2019; Snyder et al., 2009). Thus, we appeal for caution when considering trading carbon credits by 
attempting to sequester carbon in cultivated soils.

4.1.2. Limited Carbon Sequestration Potential in Well-Developed Soils

Several major edaphic features contribute to the SOC stabilization; among these are: (a) clay minerals that provide 
physical protection; (b) sesquioxides (e.g., Fe- and Al-oxides) that control ligand-exchange reactions; (c) cations 
(e.g., Ca 2+) that can form cation-bridges between both negatively charged soil organic matter (SOM) and nega-
tively charged clay minerals; and (d) short order silicates (e.g., allophane) that have van der Waals interactions 
(Cotrufo et al., 2013; Rasmussen et al., 2018; Shen, 1999).

In well-developed soils such as Ultisols, low adsorption capacity constrains the SOC sequestration since most 
of the cations have been leached out, in particular from the topsoil. The majority of the limited SOC retention 

Figure 4. SEM low-SOC (a) and high-SOC (b) model of the effects of environmental (Litter, Heat, and R_L) and edaphic 
(Srpt.A, Srpt.B, pH.A, and pH.B) factors on topsoil and subsoil SOC variation fitted using data across NEON soil plots. 
Litter factor was based on multi-year average net primary production reflecting long-term land use. Heat factor was 
represented by five observed variables—solar radiance, potential evapotranspiration, minimum and maximum annual 
temperatures, and vapor pressure deficit. Precipitation, topographic position index, and segment/break numbers of land-cover 
and land-use change derived from CCDC (Continuous Change Detection and Classification) were used to characterize the 
runoff/erosion and leaching potential factor (R_L). The mineral sorption factor of topsoil (Srpt.A) and subsoil (Srpt.B) was 
calculated based on the ratio of clay content to cation exchange capacity for each soil layer. pH.A: pH of topsoil; pH.B: pH of 
subsoil. The CFI (comparative fit index), TLI (Tucker Lewis index), and RMSEA (root mean square error of approximation) 
are fit indices of the model.
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in the subsoil primarily comes from the ligand-exchange interaction between sesquioxides and SOM (Qichun 
Zhang et al., 2014). Although accumulated clay could be found in the subsoil, they tend to have low activity with 
low CEC value and therefore fail to retain large amount of carbon. Previous studies suggest that the types and 
characteristics of clay minerals (e.g., expandability, surface area, crystalline structure), instead of clay content, 
have a greater effect on SOC stabilization (Solly et al., 2020; Torn et al., 1997; Wattel-Koekkoek et al., 2001). As 
the ratio of CEC to clay content partly reflects the types and characteristics of clay minerals through quantifying 
surface areas per unit of clay, it could be used as a promising proxy indicating clay mineralogy in carbon cycle 
models when sufficient clay mineral information is not available and the soil is not rich in SOM (e.g., Ultisols). 
However, it should be noted that such alternative could overestimate the carbon sequestration capacity due to 
mineral sorption if the soil is SOM rich. Because high amount of SOM would contribute to large value of CEC 
as well. Besides, less developed soils such as Inceptisols tend to have large range of soil properties which should 
be considered when using the CEC to clay ratio as a surrogate for mineral sorption (Rasmussen et al., 2018).

Whether a soil is near-saturated or not is also affected by many factors including the ones which are not represented 
in the soil taxonomy, such as management and disturbance. Furthermore, sequestration potential is dynamic and 
dependent on organic matter inputs and the climate which are subject to gradual change over time such as inten-
sified interannual variability. Although generalization by soil order is useful for predicting SOC change at some 
level, within-order variation exists and thus should not be ignored regarding carbon sequestration estimation.

4.1.3. Limited Carbon Sequestration Potential in Water-Limited Regimes

The constraints on carbon sequestration in water-limited regimes derive from both the low vegetation input due 
to insufficient plant-available water and the high microbial accessibility to SOM. The latter is controlled by 
processes which reduce the soil aggregate stability, such as the drought-induced soil structure/macro-porosity 
change (Zhang et al., 2019). Soil moisture was reported to drive 90% of the inter-annual variability in global 
carbon uptake through the enhanced impact of soil water stress on carbon assimilation due to the feedback 
between soil and atmospheric dryness (Humphrey et  al.,  2021). At higher water suction (drier condition), a 
secondary pool of labile carbon in these organic soils becomes accessible to the microbial community through 
(a) drying-induced consolidation; (b) loss of macro-porosity; and (c) exposure of SOM isolated by aggregates to 
air (Kaiser et al., 2015).

Natural ecosystem carbon stock is more constrained by water in dry areas, whereas heat and nutrient resources 
play a more important role in SOC dynamics in humid areas (Tang et al., 2018). The direction of carbon cycle 
feedback to climate warming has been reported to be controlled by the water availability as it influences ecosys-
tem productivity (Quan et al., 2019). Our results suggest that carbon sequestration potential in the dry domains 
is limited in both topsoil and subsoil. The Inceptisols in D13 Southern Rockies and Colorado Plateau showed 
abundant carbon loss in the topsoil and limited carbon increase in the subsoil. Additionally, the Andisols in D16 
Pacific Northwest showed large carbon loss in both topsoil and subsoil. However, these changes were not signif-
icant which could be explained by the moderate intensity of LCLUC in natural ecosystems.

4.2. Vertical Translocation, Mineral Sorption, and Leaching Contributed to Subsoil SOC Accrual

Though topsoil has the highest concentration of carbon in the soil profile and is most biologically active, more 
than half of the SOC is stored below the A horizon as reported by other studies (Jobbágy & Jackson, 2000; 
Moreland et al., 2021). In the subsoil, the leaching-driven vertical movements (e.g., transport of colloids, particu-
late organic matter, dissolved organic matter, and microbial biomass) dominantly drive the SOC dynamics which 
is controlled by the percolation/drainage rate and the physiochemical characteristics of the soil (e.g., mineral 
sorption and protection due to different pore size and clay mineralogy) (Bruun et al., 2007; Guber et al., 2022; 
Luo et al., 2019). In the SEM model of the low-SOC soil plots (Figure 4a), the runoff and leaching potential was 
the most significant driver of SOC variation in the subsoil. Additionally, a significant connection between SOC.A 
and SOC.B was found in low-SOC soil plots, which suggests that vertical translocation of SOC along the profile 
could be a dominant source of SOC accrual in the subsurface layer. Furthermore, as illustrated in the SEM models 
for both low-SOC and high-SOC soil plots (Figure 4), mineral sorption and protection, manifested by the ratio of 
CEC to clay content, played an important role in SOC stabilization in both A (topsoil) and B (subsoil) horizons. 
Explicit representation of vertical translocation, sorption and leaching processes may improve the representation 
of soil carbon for different depths in carbon cycle models.
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4.3. Future Work

Due to the selection of NEON terrestrial sites (natural ecosystem dominant), the specific SOC change at each 
domain may not be representative enough to be applied to other regions and scaled across entire domains. Addi-
tional field observations are required to sample these managed ecosystems and include them in the modeling 
effort. Beyond the NEON soil sampling sites, land use change scenarios can be more complex and dynamic than 
the one-way conversion from natural vegetation to disturbed natural vegetation, cropland, and pasture mostly 
considered here. Moreover, the selection of soil plots by NEON was not made with the intent of comparing 
paired LCLUC plots, and the soil spatial heterogeneity within domain (e.g., D18, D19) and/or soil type was 
insufficiently represented to support SOC change estimation with statistical significance. We therefore stress the 
importance of reflecting LCLUC and soil spatial heterogeneity for different soil types in the sampling design, as 
there is a need for accurate monitoring of SOC dynamics.

Despite the merits of the CCDC algorithm regarding detecting continuous LCLUC, a recently developed algo-
rithm named Continuous monitoring of Land Disturbance (COLD) (Zhu et al., 2020) may eliminate the vegeta-
tion regrowth breaks and improve the accuracy of categorizing soil plots into the reference or disturbed subgroups 
particularly for forest disturbance with relatively small magnitude of change in the surface reflectance spectra. 
Given its performance of detecting different land disturbance types including harvest, mechanical disturbance, 
wind, and fire (Zhu et al., 2020), COLD would help to investigate the effect of specific disturbance type on SOC 
change for future studies and benefit a broader audience for large-scale time series analysis of the environment.

This study assumes that 30-year climate change has a minimal impact than LCLUC by controlling the eco-climatic 
domain and soil order when estimating the SOC change. We acknowledge the limitation of the space-for-time 
substitution as other factors such as the increasing temperature and changed precipitation within the 30 years, 
as well as the legacy effect of LCLUC before 1984 could also influence the SOC dynamics (Li et al., 2022). We 
used this method as an alternative because neither ground-truth observation nor long-term remote sensing time 
series were available for use to tease out this legacy effect from our SOC change estimation across eco-climatic 
gradients at the continental scale. Nonetheless, over the 30 years, both the reference and the changed soil plots 
have been subject to similar climate change. Since the SOC change estimates in our study were calculated from 
the difference of measured SOC concentration between the reference and the changed soil plots for a given soil 
order within the same eco-climatic domain, the climate change effect on SOC change under land-use change 
scenarios could be largely canceled out. The effect of the same climate change on the SOC could vary between 
the reference and the changed soil plots, which is controlled by the specific LCLUC scenario. We assume that the 
30-year LCLUC has the dominant effect on SOC change, especially at those sites where significant changes have 
been estimated. Furthermore, our data does suggest significant changes in SOC likely occurred in several regions 
sampled by the NEON domain. Knowing this change is important for understanding the evolution of the carbon 
cycle at these sites over the future life of NEON observations.

Advances in carbon cycle models have been made over the decades (Abramoff et al., 2022; Sulman et al., 2018; 
Wang et al., 2013; Wieder et al., 2015), while limitations remain in the schemes of current models as (a) decom-
position has been over-simplified with the assumption of constant soil physicochemical properties; (b) vegeta-
tion and human-induced disturbance within the same land cover type has not been well-represented except for 
harvest and fire in some models including JSBACH (Lasslop et al., 2016) and LPJ-GUESS (Smith et al., 2001); 
(c) processes like runoff/erosion and leaching-driven vertical translocation of SOC along the profile have been 
recognized in regional and global studies but not widely used especially in the Coupled Model Intercomparison 
Project Phase 6 (CMIP6) models (Boysen et al., 2021). Additionally, microbial-mineral interactions were often 
parameterized by soil properties such as pH, soil texture, and bulk density while ignoring the types and charac-
teristics of clay minerals on mineral sorption especially in the subsoil. Land carbon cycle models could be largely 
improved if edaphic processes such as runoff/erosion and leaching along the profile were taken into account. 
Further research is still needed to improve our understanding of mineral-associated SOC in response to LCLUC 
across soil types and eco-climatic domains, as well as the movement of SOC due to runoff/erosion and leaching 
along the soil profile.

5. Conclusions
We used a space-for-time substitution of soils under different land use scenarios to estimate continental-scale 
SOC change over 30 years across NEON domains, based on samples from 715 NEON soil profiles. We further 
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quantified environmental and edaphic effects on SOC change using structural equation models. This research not 
only demonstrates a framework to estimate SOC change using the currently available datasets, but also provides 
evaluation and feedback to the NEON team and other field scientists on additional sampling and archiving to 
ensure adequate estimation and/or monitoring of SOC change. Soil variability could be further controlled if more 
soil plots were sampled by reflecting the LCLUC or disturbance within the same soil order and the same domain.

We conclude that:

•  The carbon sequestration potential of croplands and pastures requires careful assessment for credit-based 
carbon sequestration initiatives;

•  Under the land-use change scenario of converting reference natural vegetation to disturbed natural vegetation, 
SOC did not change significantly. Ultisols, Spodosols, and Inceptisols showed a trend of SOC accumulation 
especially on the east coast, while Inceptisols, Andisols, and Aridisols in the western sites showed the trend 
of SOC loss;

•  Compared with the same reference soils under natural vegetation, Mollisols and Alfisols showed a large SOC 
decrease due to farming and grazing in the central plains;

•  Runoff/erosion and leaching potential, and mineral sorption were the dominant factors affecting SOC content 
across the NEON sites, and carbon cycle models may benefit from explicitly representing these processes.

Data Availability Statement
Data used to generate the SOC change are publicly available through NEON DP1.10047.001 (https://data.neon-
science.org/data-products/DP1.10047.001). The Google Earth Engine code for land-use change detection is avail-
able through Google Earth Engine (https://code.earthengine.google.com/b92d66e33031ef0c115154cf0d6fd481). 
The R codes that support the SOC change calculation and SEM modeling of this study can be found at the repos-
itory: NEON_SOC_Change (https://zenodo.org/record/7850740). Sources and references of the environmental 
and soil datasets were given in Supporting Information S1 (Table S1). Mean SOC concentrations for each soil 
order and horizon under different land-cover subgroups within each eco-climatic domain were also provided in 
Data Set S1.
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