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Abstract

Soils store vast amounts of carbon (C) on land, and increasing soil organic car-

bon (SOC) stocks in already managed soils such as croplands may be one way to

remove C from the atmosphere, thereby limiting subsequent warming. The

main objective of this study was to estimate the amount of additional C input

needed to annually increase SOC stocks by 4‰ at 16 long-term agricultural

experiments in Europe, including exogenous organic matter (EOM) additions.

We used an ensemble of six SOC models and ran them under two configura-

tions: (1) with default parametrization and (2) with parameters calibrated site-

by-site to fit the evolution of SOC stocks in the control treatments (without

EOM). We compared model simulations and analysed the factors generating

variability across models. The calibrated ensemble was able to reproduce the

SOC stock evolution in the unfertilised control treatments. We found that, on

average, the experimental sites needed an additional 1.5 ± 1.2 Mg C ha�1 year�1

to increase SOC stocks by 4‰ per year over 30 years, compared to the C input

in the control treatments (multi-model median ± median standard deviation

across sites). That is, a 119% increase compared to the control. While mean

annual temperature, initial SOC stocks and initial C input had a significant

effect on the variability of the predicted C input in the default configuration

(i.e., the relative standard deviation of the predicted C input from the mean),

only water-related variables (i.e., mean annual precipitation and potential

evapotranspiration) explained the divergence between models when calibrated.

Our work highlights the challenge of increasing SOC stocks in agriculture and
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accentuates the need to increasingly lean on multi-model ensembles when

predicting SOC stock trends and related processes. To increase the reliability of

SOC models under future climate change, we suggest model developers to better

constrain the effect of water-related variables on SOC decomposition.

Highlights:

• The feasibility of the 4‰ target was studied at 16 long-term agricultural

experiments.

• An ensemble of soil organic carbon models was used to estimate the uncer-

tainty of the predictions.

• On average across the sites, carbon input had to increase by 119% compared

to initial conditions.

• High uncertainty of the simulations was mainly driven by water-related

variables.

KEYWORD S
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multi-modelling, soil organic carbon

1 | INTRODUCTION

The latest report of the Intergovernmental Panel on Cli-
mate Change (IPCC, 2021) announced observed changes
in the whole climate system in every region across the
world. Although many of the changes already set in
motion are irreversible over hundreds to thousands of
years, strong and sustained reduction of greenhouse gas
emissions (GHG) could still limit climate change (IPCC,
2021). Additional efforts to decrease the level of carbon
dioxide (CO2) and other GHGs in the atmosphere are
expected from land-based mitigation solutions.

The European Commission has recently released a set of
targets for European soil health (e.g., COM(2020) 381 final;
COM(2021) 800 final; SWD(2021) 450 final) (European Com-
mission, 2020, 2021a, 2021b), which includes the contribution
of soils to climate change mitigation via increased atmo-
spheric carbon (C) sequestration. These targets aim to reverse
the current average decline of soil organic carbon (SOC) in
European croplands (i.e., 5‰ year�1) to a 1‰-4‰ annual
increase (Veerman et al., 2020). With the same perspective,
the “4 per 1000” initiative has gathered contributions from
hundreds of partners across the world since 2015, to promote
agricultural practices that help to maintain or enrich culti-
vated soils in organic C, including those which reduce the
mineralization of organic C and increase its stocks in soils
(Minasny et al., 2017). This will have the combined effect of
improving soil quality (e.g., soil fertility and water retention)
(Lal, 2008) while mitigating climate change through
increased C sequestration in the soil. Despite the multiple

benefits provided by increasing SOC stocks, the feasibility of a
4‰ objective with current agriculturalmanagement practices
is still under debate (e.g., Chabbi et al., 2017; Rumpel
et al., 2020; Soussana et al., 2019; van Groenigen et al., 2017).
Recently, some studies using process-based models focused
on the bio-technical feasibility of SOC stock increase targets,
such as the 4‰ objective (e.g., Bruni et al., 2021; Martin
et al., 2021; Riggers et al., 2021). Individual model predictions
of a 4‰ increase target in Europe are relatively optimistic.
That is, a required 30 to 40% C input increase in France
according to Martin et al. (2021), and a 43% increase in
European long-term experiments (LTEs) according to Bruni
et al. (2021) under present climate conditions. A multi-
modelling exercise from Riggers et al. (2021) predicted a
much larger increase for German croplands, that is a
213–283% increase of C input required between 2090 and
2099, compared to 2014, under different climate change sce-
narios. Multi-model ensemble means are expected to provide
improved estimates compared to singular model simulations,
due to the relative independence of different SOC models'
simulation errors (IPCC, 2007). Furthermore, simulations
designed with multiple models that have underlying struc-
tural differences provide an uncertainty range of SOC projec-
tions that reflects our current understanding of SOC
processes and their possible representations. The use of
multi-model ensembles to predict the evolution of complex
systems is a widespread practice in other disciplines, such as
climate modelling (Jebeile & Crucifix, 2020; Parker, 2010;
Tebaldi & Knutti, 2007). Although some efforts have been
made in the soil modelling community to embrace this
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practice (e.g., Farina et al., 2021; Palosuo et al., 2012;
Riggers et al., 2021; Sulman et al., 2018), its use is not
consolidated yet.

In the present paper, we aim to (1) use a multi-model
ensemble to simulate the SOC stock evolution in long-term
cropland experiments, and evaluate two multi-model
ensemble configurations, one with default model parame-
ters and the other with parameters calibrated site-by-site,
(2) provide an estimate of the C input required to annually
increase SOC stocks by 4‰ in 16 LTEs across Europe, and
(3) identify potential factors creating uncertainty across
models. With this work, we want to contribute to the
understanding of the feasibility of a 4‰ SOC stock increase
target in Europe, and to add a piece to the ongoing discus-
sion about the use of multi-model ensembles in soil science.

2 | MATERIALS AND METHODS

2.1 | Experimental sites

The dataset used in this study compiles 16 long-term
cropland experiments located in Europe (9 in France and
1 each in Spain, Great Britain, Sweden, Italy, Germany,
Poland and Austria). Each experiment includes one or
several treatments with the addition of exogenous
organic material (EOM) and a control treatment without
any EOM addition, but with the same crops and fertiliser
inputs. In total, the database included 43 EOM treat-
ments and 16 controls. The data consists of several mea-
surements of SOC content and its variance across
replicates, yearly crop yields and different soil character-
istics (Table A1). The experiments lasted on average
26 years (median of 21 years), in the period between 1956
and 2018. EOM inputs were applied to the soil at differ-
ent rates and frequencies and varied from animal manure
(swine, bovine and poultry) to sewage sludge, peats, cas-
tor meal, sawdust, bio waste, green manure and house-
hold waste (i.e., residual organic material generated from
residential waste). Data for the Bologna experiment were
directly extracted from Triberti et al. (2008) and consisted
of the average SOC stock evolution in different inorganic
nitrogen (N) experiments (i.e., one treatment without any
inorganic fertiliser and 3 treatments with different levels
of N input).

Cropping systems (Table A2) were cereal-dominated
rotations (wheat, maize, barley and oat). In particular,
four were monocultures of forage crops or cereals (silage
maize in Champ Noël 3, Le Rheu 1 and Le Rheu 2 and
winter wheat in Broadbalk) and five sites had rotations of
different cereals (winter wheat and silage or grain maize
in Crécom 3 PRO, Feucherolles, La Jaillière 2 PRO,
Avrillé and Bologna). The other experiments rotated

cereal crops with legumes (chickpea, pea) and/or root
crops (potatoes, fodder beet, fodder rape and Swedish tur-
nip), oilseed crops (oilseed flax, sunflower, oilseed rape,
and mustard), and cover crops (ryegrass). Except for
Müncheberg which was irrigated in 4 out of 8 replicates
between 1974 and 1981, all experiments were rainfed and
managed under conventional tillage (the Ultuna trial was
tilled by hand with a spade to mimic conventional till-
age). Straw residues were exported from the field, except
in the French and Austrian sites, where residues were
partly or totally incorporated into the soil. In the French
experiments Champ Noël 3, Crécom 3 PRO, La Jaillière
2 PRO, Le Rheu1 and Trévarez received optimal amounts
of mineral N fertilisers both in the control and in the
treatments. In the Polish experiment of Grab�ow, N, phos-
phorus (P), and potassium (K) were applied.

2.2 | Climate forcing

Daily soil surface temperature, moisture and potential
evapotranspiration (PET) were simulated for each site
using the land-surface model ORCHIDEE (Krinner
et al., 2005). Simulations were run using a 3-hourly global
climate dataset at 0.5� (GSWP3 http://hydro.iis.u-tokyo.
ac.jp/GSWP3/), from which were also derived daily pre-
cipitation data. Mean annual surface temperature
(MAST) during the experiments ranged between 5.7�C
and 12.8�C across the sites, while mean annual precipita-
tion (MAP) was 850 mm, with a minimum of 613 mm
and a maximum of 1314 mm (Table A3). The virtual
amount of C input required to increase SOC stocks was
analysed over the period 1980–2010, which was the
30-yearlong interval covering the majority of the
experiments.

2.3 | Soil sampling

Soil samples were collected between 0–20 and 0–40 cm
depth, in 3 to 8 replicates. In Champ Noël 3, replicates
were not available, and in Broadbalk, SOC was sampled
using a semi-cylindrical auger, bulking together 10–20
cores from across the plot. SOC stocks were calculated
using the standard formula:

SOC MgCha�1� �

¼ SOC %ð Þ �BD gcm�3
� � � sampling depth cmð Þ

� 1� coarse fragments fraction vol:%=100ð Þð Þ,

where SOC (%) is the concentration of organic C in the
soil and BD is the average bulk density of the
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experimental plot. BD across the sites ranged between 1.1
and 1.7 g cm�3. Its evolution over time in the EOM treat-
ments was not taken into account due to lack of data for
all experiments. In Ritzlhof, BD measurements were not
available. Hence, for this site we estimated BD using the
intrinsically linear pedotransfer function developed by
Kaur et al. (2002), using clay, silt, and organic C content
in the soil. We compared the value of BD obtained with
this method to LUCAS soil maps (Ballabio et al., 2016)
and found similar results. Clay content ranged from 5%
to 36%, while soil pH varied from 5.8 to 8.6 across the
sites. Calcium carbonate (CaCO3) content was relevant in
Arazuri, Colmar, Grab�ow and Broadbalk soils (160, 130,
77 and 20 gCaCO3

�kg�1
soil respectively), while the rest of

the sites had none or negligible quantities of CaCO3.

2.4 | Multi-model ensemble

Six SOC models were used for the multi-model ensemble
analysis: Century (Parton et al., 1988), Roth-C
(Coleman & Jenkinson, 1996), ICBM (Andrén &
Kätterer, 1997), AMG (Andriulo et al., 1999), MIMICS
(Wieder et al., 2015) and Millennial (Abramoff
et al., 2022). All six models take as input C from plant lit-
ter and other organic material and focus on the dynamics
of C within a single soil layer (0–30 cm). Four of the
models (i.e., Century, Roth-C, ICBM and AMG) represent
soil C dynamics using a conventional multi-
compartmental structure, where C is decomposed follow-
ing first-order decay rates. The number of equations (and
compartments) differs from model to model. The remain-
ing two more recent models (i.e., MIMICS and Millen-
nial) have microbial explicit C pools, where the turnover
of litter and SOC pools is governed by temperature-
sensitive Michaelis–Menten kinetics. Each model was
initialised with the standard modelling practice which is
commonly used for the model, and using methods that
reduced the running time of the spin-up (e.g., the semi-
analytical spin-up for Century and Roth-C).

ICBM is run at an annual time step and can be solved
analytically due to the linearity of its system of equations.
The model consists of two compartments: a young and
an old SOC pool. Environmental factors are summarised
into one coefficient (r) that affects the decomposition
rates of both soil compartments equally. The response
functions for the temperature and moisture used to calcu-
late the parameter r, which had to be normalised against
the Ultuna experiment, were derived from Fortin et al.
(2011) and Karlsson et al. (2011). Following its standard
initialization method (Saffih-Hdadi & Mary, 2008), AMG
was initialised using the value of SOC during the first
year of the experiments and run numerically afterwards.

The model contains one fresh organic matter pool and
two SOC pools (active and stable). The stable pool is con-
sidered constant throughout the simulation length, while
the other pools decayed at an annual rate. Both Roth-C
and Century models were solved semi-analytically, fol-
lowing the method described by Huang et al. (2018) and
Xia et al. (2012). The method consists of (1) solving the
set of differential equations by inverse calculations to
determine pool sizes at steady state and (2) running the
model numerically for the rest of the simulation. Century
has four litter pools (structural and metabolic above-
ground litter C and structural and metabolic below-
ground litter C) and three SOC pools (active, slow and
passive), which differ in their decomposition rates. It was
run at a daily time step. Roth-C simulates the SOC evolu-
tion with a monthly time step and was converted into its
matrix continuous form following Parshotam (1996). The
model has five pools: decomposable and resistant plant
material (DPM and RPM), microbial biomass, humified
organic matter (HUM) and inert organic C. This latter
pool is constant through time and is calculated from the
level of SOC at the beginning of the experiment
(Coleman & Jenkinson, 1996). Both MIMICS and Millen-
nial models were initialised using a Newton–Raphson
approach that calculates the steady-state of the C pools
analytically (stode function of the rootSolve package in R
[Soetaert & Herman, 2009]). They were run numerically
afterwards. MIMICS has seven SOC pools: two litter C
pools that correspond to metabolic and structural litter,
two microbial pools and three soil organic matter (SOM)
pools (a physically protected, a bio-chemically recalci-
trant and an available SOM pool). The Millennial model
has five measurable pools of C: particulate organic matter
(POM), low molecular weight C (LMWC), aggregate C,
mineral-associated organic matter, and microbial bio-
mass C (MIC). Both models were run at a daily time step.

2.5 | Calibration of model parameters

All models were run with two configurations: (1) using
default parameters and (2) using calibrated parameters
that were optimised site by site in order to fit the evolu-
tion of observed SOC stocks in the control treatments.
Century, Roth-C, ICBM and AMG were coded in python
(a link to the codes is provided at the end of the manu-
script for all models), and the calibration of their parame-
ters was performed using the sequential least-squares
quadratic programming function in Python (SciPy v1.5.1,
scipy. optimise package with method = “SLSQP”), a non-
linear constrained, gradient-based optimization algo-
rithm (Fu et al., 2019). MIMICS and Millennial were
coded in R, and to optimise these models the limited-
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memory quasi-Newton method was used (optim function
in the stats package in R, with method = “L-BFGS-B”,
Byrd et al., 1995). We applied a different algorithm to
these two models because the SLSQP function was not
available in R. The use of R for MIMICS and Millennial
was imposed by the fact that they needed to be spun-up
using the stode function in R each time a new set of
parameters was generated for calibration.

To standardise the optimizations, we selected
parameters that affect the C decomposition (see Table 1
and Appendix A). In ICBM, the young pool is

multiplied by a decomposition rate (k1) and the old
pool decomposition is controlled by another decomposi-
tion rate (k2). The input into the old pool is controlled
by k1 and treatment-specific humification fractions.
Both pools are also altered by the environmental factor
r. Parameters k1, k2 and r were optimised, following
Andrén and Kätterer (1997). The active pool in AMG is
decayed at a rate of k, which depends on environmental
factors and on a potential mineralization rate (k0). k0 is
usually optimised to fit SOC stocks (Andriulo
et al., 1999; Clivot et al., 2019). In Century, C

TABLE 1 Description of the calibrated parameters related to the decomposition of soil organic carbon (SOC) in the different models

Model
Calibrated
parameters

Description of the calibrated
parameters

Default
parameter
value

Calibrated parameter
value range Unit

Reference
paper

Century M:SAG Metabolic: structural ratio of the
aboveground litter pools

0.6916 [0.15; 0.85] Parton et al.
(1988)

M:SBG Metabolic: structural ratio of the
belowground litter pools

0.69 [0.15; 0.85]

Q10 Q10 coefficient of the
temperature response function

0.69 [0.62; 1.61]

Tref Reference temperature of the
temperature response function

30.0 [19.80; 30.00] �C

Roth-C Tparam Parameter of the rate modifying
factor for temperature

18.27 [13.98; 29.28] Coleman and
Jenkinson
(1996)

ICBM k1 Potential mineralization rate
affecting the young and old
SOC pools

0.80 0:03;18:81½ � year�1 Andrén and
Kätterer
(1997)

k2 Potential mineralization rate
affecting the old SOC pool

6.0�10�3 1:83�10�3;94:46�10�3½ � year�1

r Temperature and moisture
response function parameter

1.2�10�1 [0.63; 10.00]

AMG k0 Potential mineralization rate of
the active SOC pool

0.165 [0.03; 0.60] year�1 Andriulo
et al. (1999)

MIMICS fmet Metabolic: structural ratio of the
litter inputs

0.69 [0.32; 0.85] Wieder et al.
(2015)

av Tuning coefficient of the
maximum reaction velocity of
the Michaelis–Menten kinetics

8:00�10�6 [3.34 �10�6; 8.00 �10�6�

ak Tuning coefficient of the half-
saturation constant of the
Michaelis–Menten kinetics

10.00 [6.54; 20.00]

Millennial Eapl Activation energy for the
maximum rate of POM
decomposition

64,320 [643.77�102;

679.06�102]

J mol�1 Abramoff
et al. (2022)

Kpl Half-saturation constant of POM
decomposition to LMWC

1.00 �104 [0.94 �104; 1.08�104] g C m�2

Ealb Activation energy for the
potential LMWC uptake rate

60.26 �103 [57.92�103; 62.33�103� J mol�1

Note: Functions where they appear are described in detail in Appendix A.
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decomposition is mostly influenced by the temperature
response function, which follows the Van't Hoff rela-
tionship, based on the Q10 factor (van't Hoff, 1884). Fol-
lowing Bruni et al. (2021), we calibrated the Q10 and
reference temperature factors (Tref), after calibrating
the metabolic: structural litter ratio of the aboveground
(M:SAG) and belowground (M:SBG) litter pools. These
latter parameters are used to partition the C input into
the different litter pools and are a function of the nitro-
gen: lignin (N:L) ratio of the plants. They were opti-
mised since no data was available on the N:L ratio of
the different crops. SOC decomposition in Roth-C is
also sensitive to the temperature response function,
which is an empirical function initially built for the
Rothamsted experiment (Jenkinson, 1990). We cali-
brated the temperature function parameter (Tparam) for
each experimental site. In MIMICS, we calibrated the
tuning coefficients (av and ak) of the temperature-
sensitive kinetic parameters, on which the rates of C
decomposition depend. As in Century, we also cali-
brated the parameter that is used to partition litter
inputs into their metabolic and structural fraction
(fmet). In Millennial, we optimised (1) the activation
energy (Eapl) and (2) the half-saturation constant (Kpl) of
the maximum rate of POM decomposition, and (3) the
activation energy (Ealb) of the maximum uptake rate of
the LMWC pool. Both activation energies are parameters
in an Arrhenius temperature relationship and are linked
to the decomposition of POM into LMWC and to the
microbial uptake of LMWC (Abramoff et al., 2022).

The performance of the models was evaluated by test-
ing the similarity between simulated and observed SOC
stocks in the control treatments, in terms of (1) their cor-
relation (ρ), (2) their standard deviation (SD) normalised
against the SD of the observations, and (3) their centred
root-mean-squared error (RMSE), also normalised
against the SD of the observations, which is a measure of
the prediction's error (Taylor, 2001). Note that the corre-
lation between observed and simulated SOC stocks was
tested with Spearman's rank correlation coefficient (ρ)
because the variables did not follow a normal
distribution.

Carbon input from plant material was calculated from
annual crop yield measurements, following the method
developed by Bolinder et al. (2007) for Canadian experi-
ments and adapted by Clivot et al. (2019) to the same
French experiments used in this study. The allometric
functions used to estimate the C input and its allocation
to the aboveground and belowground part of the plant
can be found in Clivot et al. (2019) and have already been
applied to other agricultural experiments in European
temperate climates such as those in our study (Bruni
et al., 2021).

2.6 | Required C input to increase SOC
stocks by 4‰ per year

SOC stocks were simulated for each control treatment
over the experiments' duration to evaluate the capability
of the models to reproduce observed SOC stocks. The
period 1980–2010 was selected to analyse the virtual
amount of additional C input required to increase the
SOC stocks. We simulated one scenario of SOC stock evo-
lution, where SOC stocks increased on average by 4‰
year�1 for 30 years, relative to the initial SOC stocks in
the control treatments.

The amount of C input required to increase SOC
stocks by the defined target was calculated using an
inverse modelling approach that consisted in minimising
the following equation:

J ¼ jSOC0
model � target�SOC30

model Ið Þj

where SOC0
model and SOC30

model are the modelled SOC
stocks at the onset of the experiment and after 30 years of
simulations, respectively; I is the simulated C input
required to reach the target, and target = 1.12 (i.e., 1
+ 0.004 � 30) since the objective was to reach an average
SOC stock increase of 4‰ year�1 for 30 years. We used
the Python function SLSQP to solve the optimization
problem. Carbon input quality is accounted for differ-
ently in the different models. In Millennial, regardless of
its quality 1/3 of the C input is allocated to POM and the
rest 2/3 to LMWC (Abramoff et al., 2022). In Century and
MIMICS, the allocation of the C input to the metabolic
and structural litter pools depends on the L:N ratio of the
C input material. Hence, the C input quality can be inferred
by the M:S ratio of the C input. For these models, during
the optimization process, we did not prescribe the quality of
the C input since the optimization directly simulated the
optimal allocation of C in the different litter pools to reach
the 4‰ target. However, for Century, we constrained the
virtual C input to have the same aboveground: below-
ground ratio as the initial litter inputs, assuming that crops
would not change with the 4‰ implementation and that
the EOM would be equally split above and below the soil
surface (see Bruni et al., 2021).

In AMG and ICBM, the humification coefficient h
varies according to the quality of the C input. For
instance, in AMG h = 0.217 for aboveground winter
wheat and h = 0.52 for cow manure (Bouthier
et al., 2014). In ICBM, h = 0.125 for straw and crop
residues and h = 0.31 for farmyard manure (FYM)
(Andrén & Kätterer, 1997). In Roth-C, when entering
the soil, 59% of litter inputs from crop plant material
are allocated to DPM and 41% to the RPM

6 of 26 BRUNI ET AL.
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compartment, while FYM is assumed to be more
decomposed and is split in the following way: 49%
DPM, 49% RPM and 2% HUM (Coleman &
Jenkinson, 1996). For these three models, a fraction f of
the estimated C input was set to have the same quality as
the litter input in the control treatment (i.e., its parame-
trization or its allocation to the different pools). The
remaining 1� fð Þ fraction of C input was set to have the
average quality of the EOM in the different treatments at
the experimental site. For example, for AMG a site with
initial litter input from winter wheat equal to 2 Mg C
ha�1 year�1 in the control treatment, and with a cow
manure treatment only, a fraction f ¼ 2=I was set to have
aboveground h = 0.217 and the remaining fraction
1� fð Þ was set to have aboveground h = 0.52, where I is
the estimated C input required to reach the 4‰ and
where the maximum value of f was set to be 1. Both non-
calibrated and calibrated models were run independently
to estimate the amount of C input to reach the 4‰ target
at the 16 experimental sites.

2.7 | Comparison of models outputs

Model outputs were compared using different techniques.
First, we tested whether the models and the calibration
affected the simulated C input needed to reach the 4‰
target across the 16 sites. This was done using a linear
mixed-effect (LME) model, with fixed effects for the
explanatory variables: “model”, “calibration” and the
interaction between the two, and including a random
effect for “sites”. The model was fit by maximising the
log-likelihood and an analysis of variance (ANOVA) was
applied to test the effect of the different explanatory vari-
ables on the simulated C input. Normality of the

residuals was tested using a Shapiro–Wilk normality test,
and homoscedasticity was tested using Levene's test of
equality of variances. Since the residuals were not nor-
mally distributed, the data were log-transformed. Second,
we looked for groups of models that behaved similarly.
We created clusters based on the minimum correlation
distance between models' outputs (i.e., the additional C
input to reach the 4‰ target). The distance was calcu-
lated with an optimization algorithm based on a mini-
mum spanning tree (Müller et al., 2012). To estimate
which measured variables better explained the differ-
ences between the model outputs, we used a linear model
and tested for the normality of the residuals using a
Shapiro–Wilk test. The explanatory variables of the linear
model were: MAST, MAP, PET, initial C input (Cin

0 ), clay
and CaCO3 content, soil C:N and pH, initial SOC stocks
and N input (Nin). This latter was considered as a cate-
gorical variable, equal to 1 if N inputs were applied at
any dose and 0 otherwise. The response variable was the
relative standard deviation (RSD) among models' outputs
(RSD = SD/mean � 100). To select the most parsimonious
model, we performed a step-wise regression by Akaike
Information Criteria (AIC). The results for the multi-
model ensembles are provided as their multi-model
median (MMM) and mean.

3 | RESULTS

3.1 | Evaluation of the multi-model
ensemble configurations: Prediction of the
SOC stocks in the control treatments

Observed SOC stocks in the control treatments, that
is, plots without EOM additions were found to

FIGURE 1 Predicted and observed soil organic carbon (SOC) stocks (Mg C ha�1) in the control treatments, according to the six models

(different colours and shapes) with: (a) non-calibrated and (b) calibrated parameters. The purple line represents the multi-model median

(MMM) and the black line corresponds to the identity line.
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decrease on average by 0.54% year�1 (Table A2). The
calibrated models were able to correctly represent
the evolution of SOC stocks in these treatments
(Figure 1). In particular, the calibration of model
parameters improved the representation of observed
SOC stocks in the control treatments (coefficient of
determination, R2 = 0.97) (Figure 1b), compared to the
non-calibrated configuration (R2 = 0.07) (Figure 1a). The

calibration also enhanced single model performances,
increasing the ρ correlation coefficients to more than
0.89 in all models, approaching the normalised SDs closer
to 1, and reducing the normalised centered RMSEs to less
than 0.5 (Figure 2). While AMG performed better than
any other model in the non-calibrated configuration
(i.e., R2= 0.90 and RMSE = 5.46), in the calibrated con-
figuration both ICBM and AMG outperformed the other
models with the highest R2 (0.98) and the lowest RMSE
(<2.20Mg C ha�1) (Table 2). Also, the calibrated MMM
(R2 = 0.97 and RMSE = 2.4 Mg C ha�1) outperformed all
single models, except for ICBM and AMG.

Table 3 shows the size of the low decomposition rate
pools predicted by the different models at initialization.
Roth-C systematically underpredicted the size of the inert
pool, compared to the other models. This latter had rela-
tively comparable levels of C in their low decomposition
rate pools, despite differences throughout the sites
(Table 3).

3.2 | Evaluation of the multi-model
ensemble configurations: Effect of
additional C input on the SOC stock
increase

In the EOM treatments, SOC stocks were found to
increase by 0.28% year�1 on average (Table A2). The
capability of the multi-model ensemble to predict the
effect of additional C input on SOC stock changes is illus-
trated in Figure 3. The graph shows the fitted regression
line between additional C input and SOC stock increase
in the EOM treatments (R2 = 0.58). For field data, the
additional C input was calculated as the amount of yearly
average EOM added to the soil, plus the increased crop
productivity relative to the control treatment. The regres-
sion line between C input and SOC stock variation, and
its CI at 95%, can be compared to the simulated addi-
tional C input required to reach a 4‰ increase of SOC

FIGURE 2 Taylor diagram showing the non-calibrated (full

spots) and calibrated (crossed spots) model performances in

reproducing observed soil organic carbon (SOC) stocks in the

control treatments. X-axis and Y-axis show the standard deviation

(SD) of simulated SOC stocks, normalised against the observed SOC

stocks' SD. The circumference of the quarter circle shows the

Spearman's correlation coefficient (ρ) between simulated and

observed SOC stocks, and the grey arcs represent the centred

normalised root-mean-squared error (RMSE).

TABLE 2 Statistics of models and multi-model median performances

R2 non-calibrated R2 calibrated
RMSE non-calibrated RMSE calibrated
Mg C ha�1 Mg C ha�1

AMG 0.90 0.98 5.46 2.16

Century 0.02 0.96 20.15 2.88

ICBM 0.02 0.98 19.63 2.04

Millennial 0.06 0.92 20.27 4.53

MIMICS 0.10 0.93 17.16 4.31

Roth-C 0.04 0.96 28.67 2.87

MMM 0.07 0.97 16.41 2.41
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stocks (MMMs ± CI across sites). In the non-calibrated
configuration, the effect of additional C input on the SOC
stocks was overestimated by the MMM. On the contrary,
the calibrated MMM was not significantly different from
the EOM treatments' regression line. This means that, in
the calibrated multi-model ensemble configuration, the
predicted effect of additional C input on the SOC stocks
was close to observations, when compared to the 43 EOM
treatments of the 16 experimental sites. Comparing the
CI of the MMMs, we can also appreciate that the predic-
tions of the non-calibrated and calibrated configurations
were significantly different from each other (Figure 3).

3.3 | Required C input to reach a 4‰
target

Table 4 shows the percentage change of C input required
to reach the average 4‰ annual increase of SOC stocks,
relative to the initial level of C input in the control treat-
ment. The calibrated configuration predicted a median
increase of 118.7% to reach the target and a multi-model
mean of 115.6% (±56.5%) (Table 4). The variability across
models was high for both non-calibrated and calibrated
configurations. However, the calibration reduced the
RSD across models (RSD = 48.8%) (Table 4).

Figure 4 shows the site average additional C input
predicted by the single models and the MMM. The cali-
brated configuration predicted that C input had to
increase by 1.55 ± 1.20 Mg C ha�1 year�1 to reach the

4‰ target (MMM of the site average C input ± median
SD), compared to the initial C input. As it was shown in
Figure 3, the calibrated MMM was lower but not signifi-
cantly different from the C input needed to increase SOC
stocks by 4‰, inferred from EOM treatments' field data
(regression line at x = 0.4 in Figure 3), that is, 1.96
± 0.15 Mg C ha�1 year�1.

The median site variability of the required additional
C input was higher in the calibrated ensemble
(RSD = 66.2%), compared to the non-calibrated ensemble
(RSD = 40.2%) (Table 4). This means that the required
amount of C input across sites had a larger variability
when the models were calibrated (see also the range of
values of the calibrated parameters across sites in
Table 1). This was true for all models, except for AMG
and Millennial where the calibration reduced the RSD of
the simulated required C input across sites. Roth-C was
the least sensitive to calibration, showing similar mean
additional C input in both configurations (Table 4).

Table 5 shows the results of the ANOVA for the LME
model. We found that both the explanatory variables
“model” and “calibration” had a significant effect on the
simulated C input (p < 0.05), that is, the difference
between the C input simulated by the various models, was
statistically significant and the difference between the cali-
brated and non-calibrated configurations was also statisti-
cally significant. We observed a non-significant interaction
effect between models and calibration. This means that
the effect of the calibration on the simulated C input did
not depend on the model (Table 5).

TABLE 3 Soil organic carbon

(SOC) stock (Mg C ha�1) in the low

decomposition rate pool of the

calibrated models at initialization, for

each site

Site
AMG Century ICBM Millennial MIMICS Roth-C
Stable Passive Old Mineral-associated Passive Inert

CHNO3 26.4 17.3 40.6 13.4 9.8 3.3

COL 35.3 26.5 43.2 22.0 14.0 4.6

CREC3 40.3 27.9 59.6 22.8 13.6 5.4

FEU 25.9 19.4 30.1 15.3 9.6 3.3

LAJA2 21.1 14.9 34.6 11.3 8.1 2.6

RHEU1 23.5 15.6 5.4 13.0 9.6 2.9

RHEU2 23.7 13.9 39.4 6.2 8.4 3.0

ARAZ 36.0 26.4 6.0 19.3 15.2 4.7

ULTU 27.9 16.9 44.3 17.0 12.9 3.5

BROAD 16.1 11.2 25.7 9.3 7.0 1.9

TREV1 75.0 45.7 112.8 37.1 31.2 10.9

AVRI 30.0 21.6 48.7 16.1 11.8 3.9

BOLO 16.5 12.6 2.9 9.4 5.5 2.0

GRAB 20.2 12.9 33.3 10.2 5.6 2.5

MUNCH 12.8 7.2 12.2 7.9 4.2 1.5

RITZ 18.8 15.3 22.6 17.7 10.7 2.3
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3.4 | Clusters and variability among
models

The heatmap of Figure 5 shows the level of the additional
simulated C input to reach the 4‰ for each site and each

calibrated model. The dendrogram at the top of the figure
clusters the models based on the minimal correlation dis-
tance among simulated C input. What can be appreciated
from the graph is that there are two main groups of
models that behave similarly when calibrated. The first
cluster is formed between the AMG and ICBM models.
The second cluster incorporates MIMICS, Century,
Roth-C and Millennial (the correlation between the first
two models being higher than between the others). The
results of the stepwise AIC algorithm showed that,
among the non-calibrated models, different variables had
a significant effect (p < 0.05) on the RSD between simu-
lated C input (i.e., initial SOC stocks, MAST and initial C
input (Cin

0 )) (Table 6). When the models were calibrated,
the RSD among the simulated C input was explained by
water-related variables only, that is, MAP and PET
(Table 6).

4 | DISCUSSION

4.1 | Evaluation of the multi-model
ensemble configurations

The calibration of model parameters improved the simu-
lation of SOC stocks in the control treatments of the
16 LTEs used in this study (Figure 1). In a multi-
modelling exercise, Farina et al. (2021) showed that site-
specific calibration improved the simulation of SOC
stocks in 7 bare-fallow LTEs in Europe. This was true
both compared to a non-calibrated and to a multi-site cal-
ibration configuration (i.e., where generic parameters are
optimised for all sites together). Site-specific calibration
accounts for the spatial variability of model parameters
across sites. However, in order to avoid overfitting, site-
specific calibration requires sufficient repeated SOC mea-
surements for each site, especially for models with many
parameters.

In our study, the calibration was also validated against
the effect of C input on SOC stocks. In fact, the calibrated
multi-model ensemble better reproduced the effect of C
input on SOC stocks in the 43 EOM treatments, compared
to the non-calibrated configuration (Figure 3). In particu-
lar, we found that the MMM additional C input to reach
the 4‰ simulated by the calibrated configuration was not
significantly different from the observations (p < 0.05),
whereas the non-calibrated and calibrated ensembles were
different from each other at a statistically significant level
(Figure 3). On the one hand, the spatial variability
(i.e., across sites) was increased by the calibration
(i.e., median RSD across sites were 40.4% and 66.2% in the
non-calibrated and calibrated ensembles, respectively,
Table 4). This is not surprising, since the parameters were

FIGURE 3 Annual soil organic carbon (SOC) stock increase

(%) for different levels of additional carbon (C) input in the organic

amendment treatment experiments (black spots) and additional C

input required to reach the 4‰ SOC increase according to the 1)

non-calibrated multi-model median (MMM) (blue cross) and the 2)

calibrated MMM (orange cross). Errors are shown as confidence

intervals (CI) the regression line between additional C input and

SOC stock increase in the exogenous organic matter (EOM)

treatments is indicated in the figure (y¼m �SDmð Þ� x + b� SDbð Þ).

TABLE 4 Required percentage change of carbon (C) input to

increase soil organic carbon (SOC) stocks by 4‰ per year on

average over the period 1980–2010 for the non-calibrated and

calibrated models' configurations

Model

Average C input change ± site
RSD (%)

Non-calibrated Calibrated

AMG 116.4 ± 94.9 149.2 ± 84.3

Century 29.5 ± 9.8 43.7 ± 40.6

ICBM 32.5 ± 17.9 114.7 ± 89.5

Millennial 154.9 ± 64.2 197.8 ± 57.0

MIMICS 59.6 ± 62.5 122.7 ± 75.4

Roth-C 60.7 ± 14.7 62.3 ± 51.9

Multi-model statistics

MMM ± median RSD 60.1 ± 40.4 118.7 ± 66.2

Multi-model mean 73.4 115.6

Multi-model SD 49.8 56.5

Multi-model RSD 67.9 48.8

Note: In the table are specified the multi-model median (MMM), the multi-

model mean, the standard deviation (SD) from the mean, and the relative
standard deviation (RSD).
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calibrated independently at each site, whereas in the
default configuration model parameters were constant
across all sites (see Table 1). On the other hand, the vari-
ability of the predicted C input across models was
decreased by the calibration (i.e., RSD across models was
67.9% in the non-calibrated and 48.8% in the calibrated
configuration), meaning that the re-parametrization
decreased the uncertainty of the predictions.

4.2 | Single model performances
and MMM

Considering both configurations, AMG had the highest
indices of performance (Table 2). However, AMG's com-
parison with the other models might be partly biased,
because when the model was initially developed it was cal-
ibrated on several LTEs across France, which include
many of the experiments in our database. Hence, we can-
not ascertain that its application to other sites outside the
European temperate zone would be as straightforward,
although the model has already been evaluated on a few
sites outside Europe (Andriulo et al., 1999; Saffih-Hdadi &

Mary, 2008). AMGwas also the only model initialised with
observed initial SOC stocks, while the other models were
spun-up either analytically or semi-analytically. This has
enabled the model to capture the correct level of initial
SOC stocks, lending it an advantage in the model compari-
son. In fact, AMG prescribes the initial fraction of total
SOC that is considered stable (Saffih-Hdadi &Mary, 2008).
That is, 65% of the total initial SOC stocks for sites with a
long history of arable land use (Clivot et al., 2019). Most
pool-based models do not prescribe default partitioning in
the different SOC pools at the beginning of the experi-
ment. Hence, initialization to allocate the C in their differ-
ent pools is typically done by running the models with
constant or repeating inputs until the C pools reach equi-
librium (i.e., spin-up). The amount of C allocated to each
pool at equilibrium is a function of the inputs to the model
and the parameters. Spin-up assumes that soils are at equi-
librium (Luo et al., 2017; Xia et al., 2012), which is often
not the case, especially for the agricultural soils with
changing management practices considered in this study.
Hence, simulations might be started at the wrong initial
values (e.g., Wutzler & Reichstein, 2007). In particular, the
level of stable or low decomposition rate C pools might
influence the SOC stock predictions in the long-term and
could partially explain the differences in the required C
input predicted by the models. Table 3 shows that the ini-
tial level of the low decomposition rate pools depends on
how these pools are defined in the models. In particular,
Roth-C showed the lowest proportion of C in its inert pool,
which is calculated with the equation from Falloon et al.
(1998) and considered constant throughout the simulation
length. Roth-C and AMG are the only models with a
completely inert pool. However, in Roth-C the humified C
pool also has a low decomposition rate (i.e., 0.02 year�1,
which means that the C takes 50 years to decompose).

FIGURE 4 Required additional

carbon (C) input (±standard deviation,

SD) relative to the unfertilised control,

to reach a mean annual 4‰ soil organic

carbon (SOC) stock increase for 30 years

across the 16 sites. The bars represent

the different models and multi-model

median (MMM). The non-calibrated and

calibrated configurations are in blue and

orange, respectively. For the MMM, the

SD bar represents the median SD across

models.

TABLE 5 Effect of “model” and “calibration” on the estimated

carbon (C) input to reach the 4p1000 target

Variables p-value

Intercept <0.0001

Model <0.0001

Calibration 0.0003

Model � Calibration 0.3476

Note: Results from the ANOVA of the log-transformed linear mixed-effect
(LME model), with random effect of the sites.
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Hence, model comparisons are difficult without consider-
ing intrinsic differences across all pools. An alternative ini-
tialization method that can be applied is called

“relaxation” (Dimassi et al., 2018). This method consists of
rescaling the SOC stocks allocated in the different pools
through spin-up, using information about the total

FIGURE 5 Heatmap of the

simulated additional carbon (C) input to

reach the 4‰, for each calibrated model

and each site. Darker cells show lower C

input and lighter cells represent higher

C input. Dendrograms above the

heatmap represent the relationship of

similarity among groups of models,

calculated as the minimal correlation

distance.

TABLE 6 Results of the stepwise Akaike Information Criteria (AIC) model for the non-calibrated (left) and calibrated (right)

configurations

Non-calibrated Calibrated

Estimate
Std.
error t value p value Estimate

Std.
error t value p value

Intercept 0.37 0.23 1.58 0.14 Intercept 11.64 5.90 1.97 0.07

Initial SOC
stocks

0.01* 0.00 5.67 0.00 Initial SOC
stocks

�0.04 0.03 �1.78 0.10

MAST 0.08* 0.02 3.90 0.00 MAP 0.01* 0.00 2.31 0.04

Cin
0 �0.52* 0.07 �7.61 <0.001 PET �0.01* 0.00 �2.59 0.02

Soil C:N �0.80 0.43 �1.87 0.09

Residual standard error: 0.1 on 12 degrees of freedom (DF) Residual standard error: 1.5 on 11 DF

Multiple R2: 0.88 Multiple R2: 0.53

F-statistic: 28.98 on 3 and 12 DF
p-value <0.001

F-statistic: 3.16 on 4 and 11 DF
p-value = 0.058

Note: The linear model was originally built with the following variables: Initial soil organic carbon (SOC) stocks, mean annual surface temperature (MAST)

and precipitation (MAP), potential evapotranspiration (PET), initial carbon (C) input (Cin
0 ), clay and CaCO3 content, soil C:N ratio, soil pH and N input (Nin).

This latter was provided as a categorical variable, equal to 1 if the experiment was fed with some N input, and 0 otherwise. The table shows the most significant
variables selected by the stepwise algorithm to explain the relative standard deviation (RSD) of simulated C input among models. Specified at the bottom are:
The residual standard error, the multiple and adjusted R2, the F-statistic and the p-value of the selected AIC model.
*p value < 0.05.
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observed SOC stocks. Due to the form of our problem
(i.e., inverse modelling requiring us to keep the relation-
ship between C input and SOC stock unchanged), this
method could not be used. Another approach that could
be tested to compare model performances using observed
initial total SOC stocks would be to prescribe a priori the
initial partitioning of SOC in the different pools of those
models that are usually initialised with spin-up. An
attempt was made for instance with Roth-C in an
Australian catchment (Karunaratne et al., 2014). How-
ever, this method has proven complicated and nongenera-
lizable for models based on conceptual SOC pools
(e.g., Sohi et al., 2001), and the scientific community has
rather focused on building new modelling frameworks
based on measurable pools (e.g., MEMS, Millennial)
(Abramoff et al., 2022; Cotrufo et al., 2013). Initializing
models with measurable SOC fractions requires additional
data, which is one of the main drawbacks of such
approaches.

After calibration, the models overall performed well,
with an R2 ≥ 0.92 and an RMSE <4.6 Mg C ha�1. Other
than initialization and parametrization, limitations in
model predictions could also be explained by the forcing
data used and the processes described in the models. For
example, previous land use or current management prac-
tices, which are likely to influence the level of SOC stocks
at the onset of the experiment, were not prescribed in the
models.

AMG not only outperformed all other models in the
non-calibrated configuration, but it also performed better
than the MMM in both configurations (Table 2). Tebaldi
and Knutti (2007) pointed out that, while for a single
given simulation the multi-model performance might not
be significantly better than the single best model,
improvements are more substantial when aggregated per-
formances over many simulations are considered. Of
course, as the multi-model ensemble gets larger, the esti-
mates will be more reliable. Farina et al. (2021) suggested
that the minimum number of models to obtain reliable
results in SOC modelling would be �10 models for non-
calibrated multi-model ensembles, and 3 to 4 models if
site-specific calibration is realisable. However, this likely
depends on how much the structure varies among the
multi-model ensemble.

4.3 | Reaching a 4‰ target

Many recent works have studied the feasibility of the 4‰
target through a modelling perspective. Martin et al.
(2021) estimated that a 30% to 40% increase in C input
would be needed to reach a 4‰ objective in France, using
an inverse Roth-C modelling approach. Bruni et al.

(2021) used a similar inverse modelling approach to the
Century model and applied it to 14 LTEs across Europe.
They estimated that C input should increase by 43% on
average, compared to the initial value of the experimental
control treatments. These results are similar to our esti-
mates from the calibrated Roth-C and Century models
(Table 4). However, they are among the most optimistic
ones when compared to the other models (Table 4). Fur-
thermore, Bruni et al. (2021) showed that the level of the
predicted C input was much higher under increased soil
temperatures. Riggers et al. (2021) used a multi-model
ensemble to predict SOC stock increase scenarios under
future climate change in German croplands. They esti-
mated an average increase of C input of 213–283% to
reach an average 4‰ increase between 2090 and 2099,
compared to 2014. Our results seem to be in the middle
of the range of existing estimates (i.e., a median increase
of 118.7% according to the calibrated ensemble), which
refers to the period 1980–2010 under the current climate.
Indeed, although the estimate of Riggers et al. (2021) is
higher than ours, they estimated this change over a lon-
ger period (and under future changes in climate), when
SOC stocks in German croplands are expected to decrease
at a strong rate because of forecasted increased tempera-
tures (Riggers et al., 2021; Wiesmeier et al., 2016).

Our findings show that the use of one single model to
predict the evolution of SOC stocks and its related vari-
ables (e.g., the C input) is likely to bias the outputs of the
modelling exercise. The present study raises the attention
of the soil modelling community to the importance and
utility of multi-model simulations and model intercom-
parison exercises. Multi-modelling approaches are espe-
cially necessary when models are used at new sites
without previous validation. Besides, multi-modelling
has been an established practice in climate projections
for decades (Jebeile & Crucifix, 2020; Parker, 2010;
Tebaldi & Knutti, 2007), one example being the Coupled
Model Intercomparison Project (CMIP), which was cre-
ated in 1995 and is nowadays the reference framework in
which climate models are aggregated to predict future
scenarios of climate change (Jebeile & Crucifix, 2020).
These ensembles are currently used in the Intergovern-
mental Panel on Climate Change (IPCC) reports, consid-
ered to be the most reliable source of knowledge about
climate change.

As for the feasibility of a 118.7% increase in C input,
this likely depends on the reference practice against
which it is compared. In fact, minerally fertilised crops
might already have higher C input compared to unferti-
lised crops, due to higher nutrient availability that
enhances net primary production (Gross & Glaser, 2021),
making it harder to increase C input further. Doubling
the C input where mineral fertilisers and EOM inputs are
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already applied will likely require the implementation of
other agricultural practices (e.g., agroforestry systems,
cover cropping, improved crop rotations, and crops with
high belowground biomass). This is the case for Europe,
for example, where croplands are usually minerally ferti-
lised (Eurostat, 2021) and where EOM inputs are already
widely applied (Bruni et al., 2022; Foged et al., 2011;
Soussana et al., 2019; Zhang et al., 2017). Our results
show much lower C input requirements relative to the
10-time increase stated by Berthelin et al. (2022) to reach
the 4‰. We argue that all the models used in our exercise
do take into account that fresh C inputs have a fast min-
eralization rate in the short-term, hence it is unlikely that
they are underestimating the C input requirements for
this reason (Angers et al., 2022; Berthelin et al., 2022).
However, our results may be over-optimistic since we did
not account for future climate change (e.g., Bruni
et al., 2021; Riggers et al., 2021) and because of the uncer-
tainty brought by initialization issues, especially on the
actual amount of stable SOC. Also, additional C input
needs to be maintained once the SOC stocks reach a new
equilibrium, that is, several decades to several hundred
years (Berthelin et al., 2022). This requires transitioning
to practices that permanently provide additional C input
to the soil (e.g., agroforestry systems, cover cropping, and
improved crop rotations) in order to maintain the goal in
the long-term. In addition to that, soils that currently
have higher SOC stocks are likely to require more C
input to sustain a 4‰ target, compared to soils with
depleted SOC stocks (Figure S1), due to the proportional
contribution of SOC that is required. This is especially
true for soils that are undergoing C losses (e.g., see SOC
stock changes in the control plots, Table A2), since the
SOC stocks first need to be restabilised before they might
increase (Bruni et al., 2022; Soussana et al., 2019). Strate-
gies to increase SOC stocks may take into account past
and current SOC trends to set the targets, although for
soils with high SOC losses this might result in zero net C
gains (Bruni et al., 2022; Soussana et al., 2019). In any
case, restoring degraded soils should be the priority in
order to reach the objective of land degradation neutral-
ity (LDN) of the United Nations Convention to Combat
Desertification (UNCCD) (Soussana et al., 2019), and C
farming strategies should aim to preserve SOC-rich soils
while restoring depleting stocks. The database that was
gathered for our exercise, shows that increasing SOC
stocks with additional EOM is possible for soils that are
undergoing SOC losses, in the middle to long-term (i.e., 8
to 54 years) (Table A2). However, it is worth noting that
the use of EOM does not result in additional C sequestra-
tion but rather in locally increased SOC stocks. For exam-
ple, extracting peats from former peatlands in order to
apply them to crops is not itself a climate-relevant C

sequestration practices because it only moves C from one
place to another, with also possible losses. In our work,
EOM treatments were used for methodological investiga-
tion purposes only. That is, to evaluate the multi-
modelling tool with available agricultural LTEs where
SOC stocks were measured after increasing C inputs to
the soil. However, we did not quantify the full C cost of
acquiring and applying EOM.

4.4 | Variability between calibrated
models

The LME model showed that the models significantly
affected the prediction of C input to reach the 4‰ target.
That is, the prediction of each model was significantly dif-
ferent from the others (Table 5). Furthermore, there was a
significant effect of the calibration (Table 5). Although the
ensembles' prediction of additional C input was highly var-
iable in both configurations (Figure 4), some models' out-
puts were correlated to each other once calibrated to fit
the stocks (e.g., AMG and ICBM in Figure 5, as opposed to
Figure S2). Many factors could be responsible for the crea-
tion of such clusters. First of all, similarities in the mathe-
matical structure of the models, such as the number of C
pools, the linearity of the system of equations, and the type
of kinetics reactions. Other computational differences
could have introduced this clustering behaviour. For
instance, the spin-up method or the number and choice of
parameters calibrated. Finally, the inherent representation
of soil processes, that is, the different characterisation of
pedo-climatic variables in the model functions, also
known as structural uncertainty in ensemble modelling
(Tebaldi & Knutti, 2007). Disregarding analogies in the
mathematical structures of the models and their technical
resolution, we investigated the effect of field variables on
the variability of model outputs. We found that, while in
the non-calibrated configuration MAST, initial SOC stocks
and initial C input explained the divergence between
model outputs (i.e., their RSD), only water-related vari-
ables (i.e., MAP and PET) had a significant linear effect
when models were calibrated (Table 6). This means that
the calibration realigned the effect of all those variables
that were causing models' outputs to diverge, except for
MAP and PET variables, whose effects on the RSD were
significant after calibration. These results suggest that,
after calibration, the high variability across models was
mainly due to the representation (or non-representation)
of MAP and PET in the models. The models of the ensem-
ble do not explicitly represent soil water dynamics, but
most of them consider water-related variables as forcing
inputs. The version of Century that we used accounts for
the effect of water on C decomposition through a
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polynomial function of soil moisture, which depends on
the field capacity and affects the C in the different soil
pools (Bruni et al., 2021; Parton et al., 1988). Millennial
considers volumetric water content effects on diffusion,
matric potential, and oxygen availability, which mainly
affects microbial uptake of low molecular weight C
(Abramoff et al., 2022). ICBM summarises all environmen-
tal conditions into one coefficient (Andrén &
Kätterer, 1997), which is calculated using functions that
depend on soil moisture and temperature (Fortin
et al., 2011; Karlsson et al., 2011). Roth-C and AMG are
the only models that explicitly take as input MAP and
PET. In AMG, the moisture function depends on MAP
and PET and affects the decomposition of C in the active
pool (Clivot et al., 2019). In Roth-C, monthly precipitation
and PET are used to calculate a topsoil moisture deficit
rate modifying factor, which affects all four dynamic C
pools (Coleman & Jenkinson, 1996). MIMICS does not
explicitly consider water-related variables (Wieder
et al., 2015). Our finding suggests that particular attention
should be given to the representation of water-related vari-
ables (e.g., soil moisture, precipitation and potential evapo-
transpiration) in soils, to better constrain the underlying
processes that cause models to diverge (Martinez-
Moyano & Richardson, 2013). Models' uncertainty around
the effect of water on the SOC cycle is particularly critical
in the context of climate change, where extreme events
connected to precipitation are expected to increase (IPCC,
2021). Moyano et al. (2012), for instance, showed a strong
effect of soil texture and SOM content on the sensitivity of
C decomposition to water conditions. Our findings suggest
that SOC models are likely to sense differently the effect of
climate change on SOC stocks and that the uncertainty
among models will be even larger when future changes in
precipitation are considered. Vice versa, the uncertainty in
soils' response to precipitation is likely to affect future cli-
mate change projections. This underlines the importance
of multi-model ensembles, both to account for and to
potentially reduce the uncertainty among SOC model
predictions.

Despite the effect of water-related processes on predic-
tions, the simulated C inputs were correlated to each other
in models with similar structures (Figure 5). In particular,
models with simpler structures like AMG and ICBM
seemed to behave similarly when calibrated, while models
with a higher number of pools clustered together
(Figure 5). It is likely that the way models account for C
inputs (e.g., their decomposition coefficients, their parti-
tioning within different litter pools, and the number of lit-
ter pools itself) also affected the variability among models'
outputs and created the “structural clusters” of Figure 5
(e.g., similar litter pool partitioning between Century and
MIMICS). If models are correctly parametrised and

simulate well the evolution of SOC stocks with time, we
would expect them to converge regardless of their different
mechanistic structures. However, our results suggest that
the choice of the mathematical formalism and processes
represented in the models significantly affects the predic-
tions. This is particularly true for inverse modelling predic-
tions of C input changes, where supplementary choices on
the litter pool optimization have to be made.

5 | CONCLUSION

We found that the calibratedmulti-model ensemble was able
to correctly reproduce SOC stock changes at the 16 long-term
European cropland experiments. We estimated that annual
C input will have to increase by 119% (MMM) compared to
the unamended controls to reach a 4‰ objective over
30 years at the experimental sites. Although still very
high, we observed that the uncertainty among the different
models was reduced when parameters were calibrated.
The uncertainty among calibrated models was explained by
MAP and PET variables, indicating that the divergence in
model estimations of additional C input depended on the
choice of the processes represented in themodels.

We suggest that the soil modelling community should
rely on multi-model ensembles to account for such
uncertainty, and that model representation of water
effects on SOC stocks should be further constrained in
order to improve model predictions. This is particularly
important since uncertainties on the effect of water avail-
ability on SOC stocks will likely affect climate change
projections, due to future changes in the water cycle.
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APPENDIX A

The parameters calibrated in the models are linked to
SOC decomposition (Table 1). Below, we detail the differ-
ent functions in which they appear.

A.1. | Century

In Century, the C input is partitioned into the metabolic
and structural litters according to the metabolic to a
structural ratio (M : SratioÞ:

dLITsAG,BG

dt
¼ f S AG,BG � IAG,BG�FLS AG,BG ðA1Þ

dLITMAG,BG

dt
¼ f M AG,BG � IAG,BG�FLM AG,BG ðA2Þ

where AG = aboveground and BG = belowground,
f M AG,BG

f S AG,BG
¼M : Sratio is the metabolic:structural ratio of the

litter inputs, LITS tð Þ and LITM tð Þ are the state variables of
the structural and metabolic litter pools, respectively (g C
m�2), I is the C input (g C m�2 d�1), FLS is the outflux
from the structural litter pool (g C m�2 d�1), and FLM is
the outflux from the metabolic litter pool (g C m�2 d�1):

FLS AG,BG ¼LITS AG,BG tð Þ �kLS � f Tð Þ � f Wð Þ � e�3�ligninS AG,BG

ðA3Þ

FLM AG,BG ¼LITM AG,BG tð Þ �kLM � f Tð Þ � f Wð Þ ðA4Þ

where kLS = 0.01 and kLM= 0.041 (d�1) are the turnover
rates of the structural and metabolic litter pools, respec-
tively, f Tð Þ and f Wð Þ are the temperature and moisture
response functions, ligninS AG = 0.76 and ligninS BG= 0.72
are the lignin fractions in the aboveground and below-
ground structural litter pools, respectively.

And where the temperature response function is
defined as:

f Tð Þ¼Q10

T tð Þ�Trefð Þ
10 ðA5Þ

where Q10 is the temperature coefficient of the Van't Hoff
equation (van't Hoff, 1884), Tref is the reference tempera-
ture (�C), and T tð Þ is temperature (�C).

A.2. | Roth-C

In Roth-C, the temperature response function takes
the form:

f Tð Þ¼ 47:91

1þ e
106:06

T tð ÞþTparam

� � ðA6Þ

where T tð Þ is temperature (�C) and Tparam is a parameter.

A.3. | ICBM

In ICBM, the ordinary differential equations of the young
and old SOC pools are:

dY
dt

¼ i�k1 � r �Y tð Þ ðA7Þ

dO
dt

¼ h �k1 � r �Y tð Þ�k2 � r �O tð Þ ðA8Þ

where Y tð Þ is the state variable of the young SOC pool
(kg C m�2), O tð Þ is the state variable of the old SOC pool
(kg C m�2), i is the C input (kg C m�2 year�1), k1 is the
potential mineralization rate affecting both the young
and the old SOC pools (year�1), k2 is the potential miner-
alization rate affecting the old SOC pool (year�1), r is the
environmental parameter, and h is the “humification
coefficient”, that is, the fraction of the annual outflux from the
young to the old pool. The environmental parameter r was
calculated using the temperature and moisture response
functions described in Fortin et al. (2011) and Karlsson
et al. (2011) and normalised against the Ultuna
experiment.

A.4. | AMG

In AMG, the mineralization rate constant k of the active
pool (year�1) depends on:

k¼ k0 � f Tð Þ � f Wð Þ � f Að Þ � f CaCO3ð Þ ðA9Þ

where k0 is the potential mineralization rate of the active
SOC pool (year�1), f Tð Þ is the temperature response
function, f Wð Þ is the water response function, and f Að Þ
and f CaCO3ð Þ are functions describing the effect of clay
and CaCO3 soil content on SOC mineralization.

A.5. | MIMICS

In MIMICS, the ordinary differential equations of the
structural and metabolic litter pools are:

dLITs

dt
¼ 1� fMETð Þ � I�FLS ðA11Þ
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dLITM

dt
¼ fMET � I�FLM ðA12Þ

FLS ¼MICr tð Þ �Vmax � LITS tð Þ
KmþLITS tð ÞþMICk tð Þ �Vmax

� LITS tð Þ
KmþLITS tð Þ

ðA13Þ

FLM ¼MICr tð Þ �Vmax � LITM tð Þ
KmþLITM tð Þ

þMICk tð Þ �Vmax

� LITM tð Þ
KmþLITM tð Þ

ðA14Þ

where LITs tð Þ and LITM tð Þ are the state variables of the
structural and metabolic litter pools, respectively (mg C
cm�3), MICr tð Þ and MICk tð Þ are the state variables of the
copiotrophic and oligotrophic microbial biomass pools,
respectively (mg C cm�3), I is the C input (mg C cm�3

d�1), fMET is the fraction of the C input that goes to the
metabolic litter pool, and FLS and FLM are the outfluxes
from the two litter pools (mg C cm�3 d�1), and with
temperature-sensitive maximum reaction velocities
Vmax (mg C [mg MIC]� 1 d�1) and half-saturation con-
stants Km (mg C cm�3) of the Michaelis–Menten
kinetics:

Vmax ¼ eV slope�T tð ÞþV int �av �Vmod ðA15Þ

Km ¼ eKslope�T tð ÞþK int �ak �Kmod ðA16Þ

where V slope (ln (mg C [mg MIC] � 1 d-1)�C�1) and Kslope

(ln (mg C cm�3)�C-1) are regression coefficients

(ln (mg C [mg MIC] � 1 d�1)�C�1), V int (ln (mg C [mg
MIC] � 1 d�1)) and K int (ln (mg C cm�3)) are regression
intercepts, av and ak are tuning coefficients, Vmod and
Kmod are coefficients modifying Vmax and Km for fluxes
into the microbial pools, and T(t) is temperature.

A.6. | Millennial

In Millennial V2, the decomposition of particulate
organic matter (POM) into low molecular weight carbon
(LMWC) is:

Fpl ¼VplSw,DP
B

KplþB
ðA17Þ

where Vpl is the maximum rate of POM decomposition to
LMWC (d�1):

Vpl ¼ αple
�Eapl= R T tð Þþ273:15ð Þð Þ ðA18Þ

Vlbis the maximum uptake rate of LMWC (d�1):

Vlb ¼ αlbe
�Ealb= R T tð Þþ273:15ð Þð Þ ðA19Þ

And where Sw,D is the diffusion limitation of substrates, P
is the POM pool, B is the microbial biomass pool, Kpl is
the half-saturation constant of POM decomposition to
LMWC (g C m�2), αpl(g C m�2 (g C m�2)�1 d�1) and αlb
(g C m�2 (g C m�2)�1 d�1) are the pre-exponential con-
stants of Vpl and Vlb, respectively, Eapl (Jmol�1) and Ealb
(Jmol�1) are the activation energies of Vpl and Vlb,
respectively, R is the gas constant (J K�1 mol�1), T tð Þ is
temperature (�C).
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TABLE A1 Information on the soil of the control treatments at the onset of the 16 long-term experiments

Site

Sampling
depth

Bulk
density Carbonate Clay

Initial
SOC
stock

Soil
C:N pH Reference papercm g cm�3

gCaCO3

kg�1 %
Mg
C ha�1

Champ Noël 3 (CHNO3) 0–30 1.35 0 15 40.57 8.96 6.30 Clivot et al. (2019)

Colmar (COL) 0–28 1.30 129.57 23 54.33 10.52 8.33 Levavasseur et al. (2020)

Crécom 3 PRO (CREC3) 0–30 1.36 0 15 62.00 10.17 6.15 Clivot et al. (2019)

Feucherolles (FEU) 0–29 1.32 0 16 39.78 9.89 6.73 Levavasseur et al. (2020)

La Jaillière 2 PRO (LAJA2) 0–25 1.37 0 21 32.42 9.01 6.80 Levavasseur et al. (2020)

Le Rheu 1 (RHEU1) 0–30 1.27 0 16 36.23 10.05 5.85 Clivot et al. (2019)

Le Rheu 2 (RHEU2) 0–30 1.28 0 14 36.53 8.22 6.05 Clivot et al. (2019)

Arazuri (ARAZ) 0–30 1.67 160.00 28 55.39 6.44 8.60 Simoes-Mota et al. (2021)

Ultuna (ULTU) 0–20 1.40 0 36 42.91 8.82 6.23 Kätterer et al. (2011)

Broadbalk (BROAD) 0–23 1.25 20.00 25 24.84 8.95 7.25 Powlson et al. (2012)

Trévarez (TREV1) 0–30 1.48 0 19 115.33 9.49 6.01 Clivot et al. (2019)

Avrillé (AVRI) 0–30 1.40 0 18 46.20 8.91 6.59 Clivot et al. (2019)

Bologna (BOLO) 0–40 1.16 0 28 25.41 7.00 6.90 Triberti et al. (2008)

Grab�ow (GRAB) 0–25 1.40 76.66 5 31.08 10.76 5.87 Martyniuk et al. (2019)

Müncheberg (MUNCH) 0–25 1.47 0 5 19.66 10.00 5.95 Mirschel et al. (2007)

Ritzlhof (RITZ) 0–25 1.1 0.03 23 28.88 9.42 6.88 Kurzemann et al. (2020)

Mean 1.35 24.14 19.19 43.22 9.61 6.66

Median 1.35 0 19.00 39.78 9.16 6.59

Minimum 1.10 0 5.00 19.66 6.44 5.85

Maximum 1.67 160 36.00 115.33 10.76 8.60
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TABLE A3 Mean annual climate variables extracted from the GSWP3 climate dataset (i.e., mean annual precipitation (MAP)) or

simulated by the ORCHIDEE model at each site (i.e., mean annual potential evapotranspiration (PET), mean annual surface temperature

(MAST), and mean annual soil water content (SWC))

Site Coordinates Experiment duration PET MAP MAST SWC
mm mm �C kgH2O m�2

soil

CHNO3 48.09�N, 1.78�W 1990–2008 1107.5 818.1 12.2 21.6

COL 48.11�N, 7.38�E 2000–2013 866.6 1126.7 9.7 24.6

CREC3 48.32�N, 3.16�W 1986–2008 1131.3 1150.1 11.8 22.9

FEU 48.88�N, 1.96�E 1998–2013 1049.9 707.3 11.9 21.2

LAJA2 47.44�N, 0.98�W 1995–2009 1314.7 794.7 12.8 20.5

RHEU1 48.09�N, 1.78�W 1994–2009 1106.6 841.2 12.3 21.8

RHEU2 48.09�N, 1.78�W 1994–2009 1106.6 841.2 12.3 21.8

ARAZ 42.81�N, 1.72�W 2002–2018 1416.4 866.0 12.6 20.3

ULTU 59.82�N, 17.65�E 1956–2008 824.5 613.4 5.7 22.6

BROAD 51.81�N, 0.37�W 1968–2015 872.0 665.6 10.3 21.5

TREV1 48.15�N, 3.76�W 1986–2008 1139.5 1314.5 11.9 23.4

AVRI 47.50�N, 0.60�W 1984–1991 1170.1 680.7 12.0 20.0

BOLO 44.55�N, 11.35�E 1972–2000 1474.3 890.9 11.3 19.4

GRAB 51.35�N, 21.66�E 1980–2012 974.8 638.1 8.5 13.5

MUNCH 14.11�N, 52.51�E 1963–2016 938.3 639.9 9.2 20.9

RITZ 48.18�N, 14.25�E 1991–2018 675.5 1010.5 9.1 25.4

Mean 1073.0 849.9 10.9 21.3

Median 1106.6 829.6 11.9 21.5

Minimum 675.5 613.4 5.7 13.5

Maximum 1474.3 1314.5 12.8 25.4

Note: The table also specifies the geographical coordinates of the experiments and the years of the simulations.
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