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A B S T R A C T   

Soil carbon (C) models are used to predict C sequestration responses to climate and land use change. Yet, the soil 
models embedded in Earth system models typically do not represent processes that reflect our current under
standing of soil C cycling, such as microbial decomposition, mineral association, and aggregation. Rather, they 
rely on conceptual pools with turnover times that are fit to bulk C stocks and/or fluxes. As measurements of soil 
fractions become increasingly available, it is necessary for soil C models to represent these measurable quantities 
so that model processes can be evaluated more accurately. Here we present Version 2 (V2) of the Millennial 
model, a soil model developed to simulate C pools that can be measured by extraction or fractionation, including 
particulate organic C, mineral-associated organic C, aggregate C, microbial biomass, and low molecular weight C. 
Model processes have been updated to reflect the current understanding of mineral-association, temperature 
sensitivity and reaction kinetics, and different model structures were tested within an open-source framework. 
We evaluated the ability of Millennial V2 to simulate total soil organic C (SOC), as well as the mineral-associated 
and particulate fractions, using three independent data sets of soil fractionation measurements spanning a range 
of climate and geochemistry in Australia (N = 495), Europe (N = 175), and across the globe (N = 659). When 
using all the data together (N = 1329), the Millennial V2 model predicted SOC (RMSE = 3.3 kg C m− 2, AIC =
675, R2

in = 0.31, R2
out = 0.26) better than the widely-used first-order decomposition model Century (RMSE = 3.4 

kg C m− 2, AIC = 696, R2
in = 0.21, R2

out = 0.18) across sites, despite the fact that Millennial V2 has an increase in 
process complexity and number of parameters compared to Century. Millennial V2 also reproduced the observed 
fraction of C in MAOM and larger particle size fractions for most latitudes and biomes, and allows for a more 
detailed understanding of the pools and processes that affect model performance. It is important to note that this 
study evaluates the spatial variation in C stock only, and that the temporal dynamics of Millennial V2 remain to 
be tested. The Millennial V2 model updates the conceptual Century model pools and processes and represents our 
current understanding of the roles that microbial activity, mineral association and aggregation play in soil C 
sequestration.   

* Corresponding author. 
E-mail addresses: rose.abramoff@lsce.ipsl.fr (R.Z. Abramoff), betrand.guenet@ens.fr (B. Guenet), Haicheng.Zhang@ulb.ac.be (H. Zhang), georgiou@stanford.edu, 

georgiou1@llnl.gov (K. Georgiou), xxu@sdsu.edu (X. Xu), r.viscarra-rossel@curtin.edu.au (R.A. Viscarra Rossel), yuanwp3@mail.sysu.edu.cn (W. Yuan), philippe. 
ciais@lsce.ipsl.fr (P. Ciais).  

Contents lists available at ScienceDirect 

Soil Biology and Biochemistry 

journal homepage: www.elsevier.com/locate/soilbio 

https://doi.org/10.1016/j.soilbio.2021.108466 
Received 21 May 2021; Received in revised form 14 October 2021; Accepted 18 October 2021   

mailto:rose.abramoff@lsce.ipsl.fr
mailto:betrand.guenet@ens.fr
mailto:Haicheng.Zhang@ulb.ac.be
mailto:georgiou@stanford.edu
mailto:georgiou1@llnl.gov
mailto:xxu@sdsu.edu
mailto:r.viscarra-rossel@curtin.edu.au
mailto:yuanwp3@mail.sysu.edu.cn
mailto:philippe.ciais@lsce.ipsl.fr
mailto:philippe.ciais@lsce.ipsl.fr
www.sciencedirect.com/science/journal/00380717
https://www.elsevier.com/locate/soilbio
https://doi.org/10.1016/j.soilbio.2021.108466
https://doi.org/10.1016/j.soilbio.2021.108466
https://doi.org/10.1016/j.soilbio.2021.108466
http://creativecommons.org/licenses/by/4.0/


Soil Biology and Biochemistry 164 (2022) 108466

2

1. Introduction 

Soils are not only a vast storage pool of carbon (C) but also a 
potentially important feedback to climate change, as they store water, 
mineral nutrients and organic matter, and exchange materials with local 
waterways and the atmosphere. Exchanges of greenhouse gases between 
soils and the atmosphere are particularly relevant to C cycle-climate 
feedbacks, and are controlled jointly by biological activity including 
plant input and decomposition of organic matter by soil microorgan
isms, and by physical processes controlling soil water and temperature 
(Lajtha et al., 2018). Soil decomposition models are used to assess cur
rent soil organic matter (SOM) stocks and make predictions under future 
climate conditions. Most models project soil C loss in response to future 
warming, implying a positive feedback to climate change (Sulman et al., 
2018). Yet, large uncertainties arise from soil carbon-climate feedbacks 
due to structural and parametric uncertainties of soil C models (Luo 
et al., 2016; Wieder et al., 2017; Shi et al., 2018; Ito et al., 2020; Xu et al., 
2020). These uncertainties can be partially constrained with data, but 
only if measurements can be directly related to modeled quantities. 

When models are constrained or evaluated using data, it is often 
necessary to make assumptions about what modeled quantities repre
sent and often the measurements themselves are proxies for underlying 
biogeochemical processes (Bailey et al., 2018). However, the most 
commonly-used SOM models define pools based on turnover time that 
are not easily or consistently related to physical measurements (Parton 
et al., 1987) or they define physically-based pools that use older defi
nitions (Jenkinson and Rayner, 1977). Our best understanding of bio
logical, physical, and chemical processes in soil has advanced in the 
decades since these models were popularized. In the past decade alone, 
many models have incorporated microbial decomposition (Allison et al., 
2010; German et al., 2012; Wieder et al., 2014) and stabilization of SOM 
via aggregation (Segoli et al., 2013; Stamati et al., 2013) or mineral 
association (Wang et al., 2013; Ahrens et al., 2015; Tang and Riley, 
2015), reflecting field and laboratory studies emphasizing the impor
tance of these processes for SOM stocks and persistence (Tisdall and 
Oades, 1982; Torn et al., 1997; Kallenbach et al., 2016). 

There is a general consensus about which processes are important for 
controlling soil organic C (SOC) cycling (Schmidt et al., 2011; Lehmann 
et al., 2020), yet there is less consensus about the best mathematical 
formulation of different processes (Wieder et al., 2015a; Sulman et al., 
2018). The kinetics of chemical reactions can be approximated in 
different ways depending on assumptions. For example, 
Michaelis-Menten kinetics assumes that the concentration of the sub
strate greatly exceeds the concentration of the enzyme (forward 
Michaelis-Menten) or vice versa (reverse Michaelis-Menten) (Michaelis 
and Menten, 1913; Bailey, 1989). Equilibrium Chemistry Approxima
tion (ECA) makes no assumption about the relative concentrations of 
substrate versus enzyme (Tang and Riley, 2013; Tang, 2015), and may 
therefore be the most generally applicable approximation of reaction 
kinetics. However, a recent study comparing multiple approximation 
methods suggested that because depolymerization is effectively limited 
by enzyme binding sites, reverse Michaelis-Menten may be more 
appropriate than ECA for modeling decomposition (Tang and Riley, 
2019). Similar to kinetics approximations, equations that relate soil 
temperature and moisture to soil processes vary widely in their forms, 
causing divergent model predictions (Rodrigo et al., 1997). The earliest 
models often used empirically-derived functions for temperature and 
moisture effects, but more recent models make use of relationships that 
approximate thermodynamic or diffusive principles, respectively 
(Arrhenius, 1889; Davidson et al., 2012; Ghezzehei et al., 2018). Lastly, 
model representation of bond formation between organic matter and 
mineral surfaces varies widely across models (Sulman et al., 2018), 
reflecting the still unknown contribution of dissolved organic C sorption 
(Abramoff et al., 2021) versus other forms of complexation that immo
bilize OM (Masiello et al., 2004; Mikutta et al., 2011; Weng et al., 2017), 
including aggregation (Van Veen and Kuikman, 1990; von Lützow et al., 

2007). 
The original framework of the Millennial model (Abramoff et al., 

2018) sought to update early models such as Century and Roth-C with 
two goals: 1) to define C pools which would be related more directly to 
field measurements, and 2) to reflect current understanding of soil mi
crobial and physicochemical processes. To that end, the Millennial 
model included explicit representation of microbial activity, association 
with minerals via sorption, and aggregation of organic matter. The 
original version (Abramoff et al., 2018) was compared with the SOM 
model currently used in many Earth System Models (e.g., E3SM, CESM, 
ORCHIDEE), Century (Parton et al., 1987), but was not tested against an 
independent dataset of measurements. Therefore, it remained an open 
question whether the Millennial model could indeed predict SOC stocks 
better than a first-order decomposition model – an important gap that 
we address herein. In this study, we update the equations of the 
Millennial model, test alternate model structures, and evaluate the 
ability of the model to predict spatial variation in SOC stocks and un
derlying soil fractions across multiple biomes based on first principles. 

2. Methods 

2.1. Model development from Version 1 

The original Millennial model (hence, Version 1 or V1) equations 
were developed to facilitate comparisons with the Century model 
(Abramoff et al., 2018). As such, many of the equations of this original 
version follow a similar structure to, or are borrowed directly from, the 
Century model. For example, the temperature and moisture scalars used 
in Millennial V1 are taken from the daily-time step version of the Cen
tury model (Del Grosso et al., 2005; Parton et al., 2010). In this paper, 
we maintain the conceptual model as presented in Abramoff et al. 
(2018), but update the governing equations to reflect recent de
velopments in representations of temperature and moisture dynamics, 
microbial mortality, and protection of organic matter by association 
with minerals. The full equations of this new version, Millennial Version 
2 (V2), are presented in the next section, but the main differences be
tween Millennial V1 and V2 are summarized in Table 1. Specifically, the 
temperature function was updated from the Century temperature scalar 
used in Del Grosso et al. (2005) to the Arrhenius equation (Davidson 
et al., 2012; Abramoff et al., 2017). The moisture function was updated 
from the Century moisture scalar used in Parton et al. (2010) to a 
relationship representing the effects of matric potential, oxygen limita
tion, and diffusion on reaction rates (Ghezzehei et al., 2018). The 
maximum capacity of minerals to sorb organic matter was estimated in 
Millennial V1 using a relationship derived from 72 incubations of dis
solved organic C with different soil types (Mayes et al., 2012). In 
Millennial V2 we use a broader empirical relationship based on the C 
content of >1200 measurements of mineral-associated organic matter 
(Georgiou et al., 2021). We updated the microbial mortality equation 
from one based on a fixed rate constant to one that includes 
density-dependence of microbial biomass, sensu Georgiou et al. (2017). 
We also tested several alternate approximations of reaction kinetics, 
described in detail in Section 2.3. Millennial V1 has 23 fittable param
eters, and Millennial V2 has 24 fittable parameters. 

2.2. Model description of Millennial V2 

The system of equations below follows the conceptual figure (Fig. 1), 
tracking the size of and transfers between five C pools: particulate 
organic matter (POM; denoted P in equations), low molecular weight 
carbon (LMWC, L), aggregate C (AGG, A), mineral-associated organic 
matter (MAOM, M), and microbial biomass (MIC, B). For all Millennial 
V2 equations below, descriptions, units, and default values for variables 
can be found in Table A1. The change in POM (P) stock with time is 
governed by the balance between plant litter C input and aggregate C 
breakdown, aggregate C formation, and decomposition, 
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dP
/

dt = piFi + paFa − Fpa − Fpl [1]  

where pi is the proportion of C input allocated to POM; Fi is the flux of 
aboveground plant litter, root litter and root exudates; pa is the pro
portion of C in aggregate breakdown allocated to POM; Fa is aggregate C 
breakdown; Fpa is the aggregate carbon formation from POM; and Fpl is 
depolymerization of POM into LMWC. Depolymerization of POM is 
governed by the reverse Michaelis-Menten equation (Tang and Riley, 
2019), 

Fpl =VplSw,DP
B

Kpl + B
[2]  

Vpl = αple− Eapl/[R(T+273.15)] [3]  

Sw,D =

(
θ
φ

)0.5

[4]  

where Vpl is the maximum rate of POM decomposition modified by an 
Arrhenius temperature relationship (Davidson et al., 2012; Sierra, 
2012), and is a function of a pre-exponential constant αpl, an activation 
energy Eapl, the universal gas constant R, and the soil temperature in 
Celsius (T). Kpl is the half-saturation constant, and B is the microbial 
biomass carbon. The moisture modifier Sw,D refers to the diffusion lim
itation of substrates defined in Ghezzehei et al. (2018) as the square root 
of the ratio of the volumetric water content (θ) and the total porosity (φ). 

The formation (Fpa) of aggregate C (A) from POM is a function of the 
rate of aggregate formation (kpa) and SW,D, 

Fpa = kpaSw,DP [5] 

Similarly, soil aggregate C breakdown (Fa) into POM and MAOM is a 
function of the rate of breakdown (kb) and SW,D. 

Fa = kbSw,DA [6] 

The change in LMWC (L) depends on LMWC input, the leaching rate 
(Fl), decomposition of POM, adsorption to minerals (Flm), and microbial 
uptake (Flb), and the proportion of microbial necromass that enters 
LMWC (pb), microbial mortality (Fbm), and desorption (Fld). In a multi
layer version of the Millennial model, LMWC would also depend on 
leaching input from other soil layers, but in this single layer version we 
assume that the leaching input is included in the LMWC input, 

dL
dt

=Fi(1 − pi) − Fl +Fpl − Flm − Flb +(1 − pb)Fbm + Fld [7]  

where Fl is the LMWC leaching loss, 

Fl = klSw,DL [8]  

and where kl is the leaching rate. Adsorption of LMWC to MAOM (M) 
follows a Langmuir-type saturating relationship sensu Wang et al. 
(2013), 

Flm = Sw,DKlmL
(

1 −
M

Qmax

)

[9]  

where Klm is the binding affinity that is adjustable based on the pH. Qmax 
is the maximum sorption capacity (gC/m2), assuming a 1 m soil profile. 
Klm is further defined by the parameters p1, p2, and the desorption co
efficient (Kld), 

Klm = e− p1pH− p2 Kld [10]  

where parameters p1 and p2 are the coefficients for computing the first 
term (e− p1pH− p2 in ​ L/mg) from the site-level pH. This term is derived 
from Mayes et al. (2012) and is equivalent to the equilibrium constant. 
By multiplying the equilibrium constant by the desorption coefficient, 
we obtain the coefficient of adsorption, following the principle that the 
equilibrium constant is equal to the ratio of the adsorption coefficient 
and desorption coefficient (i.e., Keq = Kads/Kdes) (Wang et al., 2013). The 

Table 1 
Main differences between Millennial V1 and Millennial V2. Please refer to Abramoff et al. (2018) for a full description of Millennial V1 equations, to Section 2.2 for a 
full description of Millennial V2 equations, and to Table A1 for definitions of variables, their units, and values.  

Process Millennial V1 [Equation Number in Abramoff et al., 2018] Millennial V2 [Equation Number in this paper (Section 2.2)] 

Temperature function 
St =

t2 +
(t3

π

)
atan[π(T − t1)]

t2 +
(t3

π

)
atan[π t4(Tref − t1)]

[3]  
Vx = αxe− Eax/[R(T+273.15)] [3,14]  

Moisture function Sw =
1

1 + w1 exp(− w2 RWC)
[4]  Sw = eλφ

[

ka,min +(1 − ka,min)

(
φ − θ

φ

)0.5](θ
φ

)0.5 
[4,15]  

Sorption to minerals Qmax = BD 10c1 log(%clay) + c2 [11]  Qmax = depth BD %claysilt pc [11]  

Microbial mortality Fbm = kmmStSwB [17]  Fbm = kbdB2 [16]   

Fig. 1. Conceptual model of Millennial V2, following Millennial V1 of Abramoff et al. (2018). Black boxes are soil C pools. Solid arrows indicate fluxes between pools 
(See Table A1 for definitions). Colored boxes indicate modeled processes that have been updated or changed from Version 1. The dash line indicates that microbial 
biomass controls the depolymerization rate. POM = particulate organic matter, LMWC = low molecular weight carbon, MAOM = mineral-associated organic matter. 
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maximum sorption capacity Qmax in g C kg− 1 soil can be estimated using 
the empirical equation from Georgiou et al. (2021), which depends on 
the clay and silt content in percent (%claysilt) and a coefficient (pc). This 
expression is then converted to model units of g C m− 2 using the 
site-level sampling depth (depth) in m and bulk density (BD) in kg soil 
m− 3. 

Qmax = depth BD %claysilt pc [11] 

Desorption of LMWC is a function of MAOM, Qmax, and the desorp
tion coefficient (Kld) sensu Wang et al. (2013). 

Fld =Kld
M

Qmax
[12] 

Microbial uptake of LMWC is a function of microbial biomass and 
LMWC concentration, temperature, and water, 

Flb =VlbSw,BB
L

Klb + L
[13]  

Vlb =αlbe− Ealb/[R(T+273.15)] [14]  

Sw,B = eλφ
[

ka,min +
(
1 − ka,min

)
(

φ − θ
φ

)0.5]

Sw,D [15]  

where Vlb is the maximum uptake rate of LMWC, modified by an 
Arrhenius temperature relationship as in Equation (3), and Klb is the 
half-saturation constant for microbial activity. The term Sw,B refers to 
the total moisture sensitivity of biological activity (Ghezzehei et al., 
2018), where λ is the dependence of the rate on the matric potential (φ) 
and ka,min is the minimum relative rate in saturated soil. This relationship 
incorporates the effects of matric potential (eλφ), oxygen limitation 
[

ka,min +(1 − ka,min)

(
φ− θ

φ

)0.5]

and diffusion limitation of substrates 

(SW,D). 
Microbial biomass mortality is calculated using a density-dependent 

formulation derived from Georgiou et al. (2017), where the mortality 
(Fbm) is a function of a fixed microbial death rate (kbd), and the square of 
the microbial biomass pool B, which can be derived from the logistic 
growth equation of population dynamics. 

Fbm = kbdB2 [16] 

Both MAOM and POM can enter the aggregate C pool (A), 

dA
/

dt = Fma + Fpa − Fa [17]  

Fma = kmaSw,DM [18]  

where Fma is the carbon flow from MAOM to aggregate C, and kma is the 
aggregate formation rate from MAOM. MAOM is formed by sorption of 
LMWC and microbial necromass, and is affected by transfer into and out 
of the aggregate C pool, 

dM / dt = Flm − Fld + pbFbm − Fma + Fa(1 − pa) [19]  

where Fbm is the carbon flow from microbial biomass to MAOM, namely 
buildup of microbial necromass. The partitioning of microbial necro
mass to MAOM versus LMWC (pb) is not controlled by Langmuir 
adsorption but rather assumes that MAOM is made up of both mineral 
surfaces which respond to sorption (Equations 9 and 12) as well as mi
crobial necromass that forms mineral associations by other means, ac
counting for the observed discrepancy between maximum sorption 
capacities measured using DOC sorption experiments (Abramoff et al., 
2021) and the observed maximum capacity of the mineral fraction as a 
whole (Georgiou et al., 2021). 

Microbial biomass changes as a result of uptake, mortality, and loss 
via respiration, 

dB / dt = Flb − Fbm − Fmr [20] 

Uptake is partitioned into respiration (Fmr) and growth (Fbg) based on 
a temperature-dependent carbon use efficiency (CUE), 

Fmr =Flb
{

1 −
[
CUEref − CUET

(
T − Tae− ref

)]}
[21]  

Fbg =Flb
[
CUEref − CUET

(
T − Tae− ref

)]
[22]  

where CUEref is the reference CUE, and CUET is the CUE dependence on 
temperature. Tae-ref and T are the reference and current soil temperature, 
respectively. Therefore, the total CO2 released through heterotrophic 
respiration is 

dCO2 / dt = Fmr [23]  

2.3. Alternate approximations of reaction kinetics 

We tested three methods for approximating the reaction kinetics 
governing depolymerization and microbial uptake. In the Millennial V1 
model, we used the double Michaelis-Menten equation to approximate 
depolymerization and forward Michaelis-Menten for uptake. However, 
recent models use a variety of kinetics approximations ranging from 
complex to simple. Here we test three of them: (1) a combination of 
reverse and forward Michaelis-Menten (MM), (2) equilibrium chemistry 
approximation (ECA), and (3) linear (LIN) kinetics. 

Following arguments from Tang and Riley (2019) on the different 
limiting factors for depolymerization and microbial uptake, we defined a 
model using reverse Michaelis-Menten kinetics for depolymerization, 
and forward Michaelis-Menten kinetics for microbial uptake. 
Michaelis-Menten approximations are arguably the most popular reac
tion kinetics approximations in soil microbial decomposition models 
(Allison et al., 2010; Davidson et al., 2012; German et al., 2012; Wang 
et al., 2013; Wieder et al., 2014). This model variant is the default for 
Millennial V2, and depolymerization and uptake are described by 
Equations 2 and 13, respectively, from the previous section. 

Second, we tested the equilibrium chemistry approximation, which 
is a more complex approximation than Michaelis-Menten because it is 
closer to the full reaction kinetics (Tang, 2015). The ECA is commonly 
used in models with microbial and/or mineral interactions (Tang and 
Riley, 2015a; Abramoff et al., 2017). For this model variant, we replaced 
Equations 2 and 13 with 2a and 13a, respectively. 

Fpl =VplSw,DP
B

Kpl + B + P
[2a]  

Flb =VlbSw,BB
L

Klb + L + B
[13a] 

Lastly, linear kinetics is the simplest approximation, wherein the 
reaction is linear with respect to each contributing pool. However, note 
that because the reaction rate depends on two pools, the interaction is 
second-order. For this model variant, we replaced Equations 2 and 13 
with 2b and 13b, respectively. 

Fpl =VplSw,DP
B

Kpl
[2b]  

Flb =VlbSw,BB
L

Klb
[13b]  

2.4. Parametric sensitivity, collinearity, and sensitivity to inputs 

For each model variant (V1, ECA, MM, LIN), we calculated a local 
parameter sensitivity index (Sij), which summarizes the effect of each 
parameter j at timestep i for each model pool, 
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Sij =
dyi

dθj

θj

yi
[24]  

Where y is the model output and θ is the parameter value (Soetaert and 
Herman, 2009). We initialized the model using the steady-state C pools 
at default parameter values, calculated using the stode function of R 
Version 4.0.4’s rootSolve Version 1.8.2.1 package (Soetaert, 2009), as in 
Wieder et al. (2015b). Then, we ran each instance of the model for 100 
years using the same repeated global average year of forcing from 
Abramoff et al. (2018), and evaluated the model output y at time step i 
= 100 years for each parameter value θ. 

Collinearity describes the linear dependence of model parameters, 
and can be summarized in a collinearity index, γ, where a change in one 
parameter can be compensated by 1-1/γ by changing other parameters. 
For example, a model with γ = 20 can offset the effect of a parameter 
change by 95% by changing other parameters. γ has a lower bound of 1 
when all terms are orthogonal and an upper bound of infinity when all 
terms are linearly dependent. It is calculated using the normalized 
sensitivity matrix Sij with the collin function of R’s FME Version 1.3.6.1 
package, and is more fully described in Soetaert (2016), Abramoff et al. 
(2017), and Marschmann et al. (2019). Very high values can be common 
with multiple parameters; for example, in a 5-parameter model of bac
terial growth described in Soetaert (2016), the collinearity index was 
2.4 × 106 when using all five parameters. 

Using the steady state version of the model we conducted an analysis 
of model sensitivity to inputs across the range of inputs represented in 
the evaluation sites (see 2.6.1): net primary production [NPP; 
0.007–1.99 gC m− 2 d− 1], soil temperature [-3.47 – 29.9 ◦C], volumetric 
water content [0.10–0.48 m3m-3], clay and silt percentage [1–98], and 
pH [2.8–7.9]. Model steady state solutions were evaluated at 10 soil 
temperatures, 10 volumetric water contents, and 10 values of NPP 
equally spaced along the range in a full factorial design, for a total of 
1000 model evaluations. The three V2 model variants were very similar 
in their patterns, so we plotted only the model variant with the lowest 
collinearity index, V2 MM. We performed the same sensitivity analysis 
with the Century model, which is described more fully in the next 
section. 

2.5. Century and gradient-boosted models 

Because the Century model is a commonly-used process-based model 
that is included in many terrestrial biosphere models, we used it as a 
point of comparison for the Millennial model. The Century model in
cludes three soil pools (active, slow and passive) and two litter pools 
(structural and metabolic). The equations governing interactions be
tween the five Century model pools are defined in Parton et al. (1987), 
and are also well-described in Sierra and Muller (2015). We did not 
include the nitrogen and plant submodels that are described in Parton 
et al. (1987), focusing only on carbon cycling in this study. The default 
parameters are described in Table A2, and the equations reproduced in 
Appendix B. 

Both the Millennial and Century models are process-based models 
that use assumptions about soil processes to make SOC stock predictions. 
In order to evaluate the relationship between measured SOC stocks and 
the model forcing inputs (NPP, soil temperature, volumetric water 
content, pH, and percentage of clay and silt) without making any 
process-level assumptions, we created an empirical null model using a 
gradient-boosted machine learning (GBM) algorithm (R package: caret 
V6.0-86, functions: createDataPartition, trainControl, train with method 
“gbm”). GBM models were trained on 80% of the data and evaluated on 
the final 20% with 10-fold cross validation, repeated 10 times. Perfor
mance metrics for this model include the out-of-sample R2 from cross- 
validation, the root-mean-square error, and mean absolute error. The 
relative influence of the forcing input predictors was calculated using 
the decrease in error when the predictor was used to split regression 
trees in the model (Friedman, 2001). 

2.6. Model simulations 

2.6.1. Data used to fit and evaluate models 
We evaluated the Millennial V2 and Century models using three 

datasets of soil fractionation measurements. For the purposes of this 
evaluation, we used size fractionation measurements separating MAOM 
from larger size fractions using a particle size upper bound that ranged 
from 50 to 60 μm, depending on the dataset. It is important to note that 
according to these size fractionation protocols, and some mixed density- 
and size-fractionation protocols like that of Poeplau et al. (2017), the 
MAOM fraction is defined by size alone, but the aggregate and POM 
fractions, though we do not isolate them in this evaluation, can be 
defined in different ways. Traditional fractionation protocols disperse 
the soil to measure POM and MAOM fractions, but measure micro- and 
macroaggregate fractions on soil that is minimally dispersed (Poeplau 
et al., 2018). As a result, aggregate fractions measured by sieving 
minimally-dispersed soil often contain POM and MAOM. For our pur
poses, we define the aggregate fraction in Millennial V2 to be the stable 
microaggregates which remain after dispersion in the larger particle size 
fraction (>50–60 μm), and therefore do not contain substantial MAOM. 
This is analogous to the “heavy sand and stable aggregate fraction” in 
Poeplau et al. (2017), or “coarse, heavy POM” within the framework of 
Robertson et al. (2019), who used a combination of size and density 
fractionation methods similar to Poeplau et al. (2017). For our purposes, 
and to be inclusive of multiple fractionation methods, we focus on 
separating the MAOM fraction from larger particle size fractions (POM 
and stable microaggregates) using a 10 μm range for the upper bound of 
MAOM that encompasses most of the fractionation methods that are 
commonly used (Poeplau et al., 2018). In most fractionation protocols, 
microbial biomass and LMWC may be present in both MAOM and larger 
size fractions, but because these pools were on average less than 1% of 
the total modeled SOM, we grouped them into the larger size fractions, 
both for simplicity and to conserve the accuracy of the MAOM fraction 
measurement, as this was the only fraction explicitly measured by all of 
the datasets. 

The first dataset, Viscarra Rossel (VR), is derived from 495 Australian 
sites described in Viscarra Rossel and Hicks (2015) and Viscarra Rossel 
et al. (2019). Vegetation ranges from grass to forest with 155 grazed 
sites and 345 sites under minimal use or nature conservation. SOC stocks 
were reported in t/ha for the top 30 cm of soil and converted to g C m− 2. 
SOC was fractionated into three fractions, originally reported as par
ticulate organic C (POC), humic organic C (HOC), and resistant organic 
C (ROC), corresponding to the 50–2000 μm particle size fraction, the 
<50 μm particle size fraction, and charcoal measured using solid-state 
13C nuclear magnetic resonance spectroscopy (Baldock et al., 2013). 
For the purposes of this study, we define MAOM as the operational 
measurement of soil particles <50 μm (HOC), while the remaining C 
pools are considered to be comprised of soil particles 50–2000 μm 
(POC). The VR dataset reported a number of soil and climate variables, 
including bulk density, pH, percent clay and silt, and net primary pro
ductivity (NPP) derived from the land surface model BIOS2 (Haverd 
et al., 2013). Soil temperature (◦C) and soil moisture (mm3 mm− 3) were 
derived from the Global Land Data Assimilation System’s (GLDAS) Noah 
1◦x1◦ V2.1 land surface model output for the top 0–10 cm, 10–40 cm, 
and 40–100 cm of soil (Beaudoing and Rodell, 2016). We calculated a 
weighted average for the three soil layers, depending on the proportion 
of soil in each layer which is determined by the depth of sampling at 
each site. 

The second dataset, Georgiou (KG), is derived from 659 globally- 
distributed sites described in Georgiou et al. (2021), including forest, 
grass, and crops experiencing varying land management. SOC concen
trations were reported in g C kg− 1 soil and converted to g C m− 2 using 
the reported depth of sampling (median: 14 cm; 1st, 3rd quartile: 10 cm, 
20 cm; range: 6 cm–62 cm), and bulk density for the top 1 m of soil 
extracted from SoilGrids 250 m (Hengl et al., 2017) aggregated to 1 km. 
SOC was fractionated into MAOM, defined as the soil particle size 
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fraction <60 μm. The KG dataset reported percent clay and silt, but not 
pH which was derived for the top 1m of soil from SoilGrids in the same 
way as bulk density. NPP was derived from a 0.5◦x0.5◦ global data 
product of aboveground litter production (Li et al., 2019). Because NPP 
includes both above and belowground components, we estimated the 
belowground (i.e., root) litter production from the aboveground litter 
production using the ratio of aboveground-to-belowground biomass 
carbon density (Mg/ha) from gridded global maps at 300 m spatial 
resolution (Spawn et al., 2020). This makes the simplifying assumption 
that the ratio of aboveground-to-belowground biomass is analogous to 
the ratio of aboveground litter -to-fine root litter. However, the fraction 
of belowground biomass in Spawn et al. (2020) (median: 0.44, range: 
0–1) was similar to the fraction of NPP allocated to fine roots (median: 
0.47, range: 0.08–0.94) in a globally-distributed dataset (N = 112) (Xia 
et al., 2019), so we accept this first order assumption for estimating 
belowground litter production. The sum of the aboveground litter pro
duction from Li et al. (2019) and the root production estimated from Li 
et al. (2019) and Spawn et al. (2020) was used as the NPP input to the 
Millennial V2 model for the KG dataset. Soil temperature and moisture 
were derived from GLDAS as described for the VR dataset. 

The third dataset, LUCAS, is derived from 175 European sites 
included in the Land Use/Cover Area Frame Survey (Tóth et al., 2013), 
representing natural and re-vegetated forests and grassland. These sites 
measured soil fractions by size fractionation on topsoil with vegetation 
residues and litter removed, sampled from 0 to 20 cm (Cotrufo et al., 
2019). These measurements were used to evaluate the MEMS model, 
another model proposing measurable soil C pools (Robertson et al., 
2019). The MAOM pool is defined as the <53 μm soil particle size 
fraction, while the remaining C pools are considered to be comprised of 
soil particles 53–2000 μm. The dataset also measures ancillary soil 
properties such as pH and percent clay and silt. Bulk density, NPP, soil 
temperature and soil moisture were not reported, and were derived in 
the same way as described for the KG dataset. All data used in this study 
are summarized in Table 2 and a map of site locations plotted in Fig. S1. 

2.6.2. Model fitting and evaluation 
When fitting the Millennial V2 model and the Century model across 

sites, we assumed that each site had reached a steady-state. As a result, 
we could fit the model using the steady-state solution rather than 
running the model dynamically. However, whenever the collinearity 
index is greater than 20, it is not advisable to fit all of the parameters at 
once (Soetaert, 2016). Therefore, we chose to optimize parameters with 
a local parametric sensitivity index (Equation (24)) greater than |0.25|, 
or 15/24 fittable parameters in the case of the Millennial V2 model and 
13/22 fittable parameters in the case of the Century model (see Table A1 
for parameters and their fitted values). Parameters were optimized by 
minimizing the sum of squared residuals between the model and ob
servations using the modFit function of R Version 4.0.4’s FME Version 
1.3.6.1 package with the Levenberg-Marquardt algorithm. Parameter 
lower bounds were either -Inf or 0, and upper bounds were either 1 or 
Inf. We calculated the coefficient of determination (R2) for observed and 
predicted pools across sites using the optimal parameter set from fitting. 
As a model performance metric, we calculated the root-mean-square 
error (RMSE) as 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
SOCobs,i − SOCmod,i

)2

n

√

[25]  

Where SOCobs,i is the observed SOC at each site i, SOCmod,i is the modeled 
SOC at each site, and n is the number of sites. We also consider the mean 
absolute error (MAE) and mean bias error (MBE), 

MAE=

∑n
i=1

⃒
⃒SOCobs,i − SOCmod,i

⃒
⃒

n
[26]  

MBE=

∑n
i=1

(
SOCobs,i − SOCmod,i

)

n
[27] 

We calculated the Akaike information criterion (AIC) as a perfor
mance metric, which considers not only the error but also the number of 
model parameters, 

AIC = n× ln

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
SOCobs,i − SOCmod,i

)2

n

√ ⎞

⎠+ 2p [28]  

where p is the total number of model parameters. 
For the purposes of finding the best overall parameter set and 

describing relationships between SOC stocks and environmental vari
ables, we fit the model to the entirety of each dataset. This is also how we 
calculate the in-sample R2, denoted R2

in in Tables 3 and 4. However, for 
the purposes of cross-validation we fit the model to a random draw of 
80% of each dataset, holding back 20% for testing, repeated 10 times. 
Model performance indices R2

out (out-of-sample R2), RMSE, MAE, MBE, 
and AIC are calculated by comparing modeled values to the testing 
dataset and averaging across the 10 repeated fits. 

To classify the range of predicted and observed C stocks by biome, we 

Table 2 
Sources of data used to fit the model (Particle Size Fractions), force the model (NPP, soil temperature, soil moisture), or define site-specific quantities (Clay, Silt, pH, 
Bulk Density).  

Dataset Region Particle Size Fractions NPP Soil temperature & 
moisture 

Clay & Silt pH Bulk Density 

VR Australia (Viscarra Rossel and Hicks, 2015;  
Viscarra Rossel et al., 2019) 

BIOS2 (Haverd et al., 
2013) 

GLDAS (Beaudoing and 
Rodell, 2016) 

Viscarra Rossel 
et al. (2015) 

Viscarra Rossel 
et al. (2015) 

Viscarra Rossel 
et al. (2015) 

KG Global Georgiou et al. (2021) (Li et al., 2019;  
Spawn et al., 2020) 

GLDAS (Beaudoing and 
Rodell, 2016) 

Georgiou et al. 
(2021) 

SoilGrids (Hengl 
et al., 2017) 

SoilGrids (Hengl 
et al., 2017) 

LUCAS EU (Panagos et al., 2012; Cotrufo 
et al., 2019) 

(Li et al., 2019;  
Spawn et al., 2020) 

GLDAS (Beaudoing and 
Rodell, 2016) 

Tóth et al. (2013) Tóth et al. (2013) SoilGrids (Hengl 
et al., 2017)  

Table 3 
Model fit of SOC to measured values. R2

in = coefficient of determination of the 
training dataset (i.e., in-sample), R2

out = coefficient of determination of the test 
dataset (i.e., out-of-sample), RMSE = root mean square error, MAE = mean 
absolute error, MBE = mean bias error. AIC = Akaike Information Criterion. N is 
the number of SOC measurements included in each dataset.  

Dataset Model R2
in  R2

out  RMSE 
(kg C 
m− 2) 

AIC MAE 
(kg C 
m− 2) 

MBE 
(kg C 
m− 2) 

All (N =
1329) 

Millennial 
V2 

0.31 0.26 3.29 675 2.14 − 1.01  

Century 0.21 0.18 3.42 696 2.30 − 0.72 
VR (N =

495) 
Millennial 
V2 

0.46 0.37 1.83 163 1.25 − 0.63  

Century 0.40 0.32 2.11 189 1.46 − 1.17 
KG (N =

659) 
Millennial 
V2 

0.32 0.21 3.46 372 2.28 − 1.18  

Century 0.20 0.02 3.81 398 2.63 − 0.35 
LUCAS 

(N =
175) 

Millennial 
V2 

0.04 0.04 5.03 150 3.71 − 1.10  

Century 0.04 0.01 5.21 152 3.77 − 1.19  

R.Z. Abramoff et al.                                                                                                                                                                                                                            



Soil Biology and Biochemistry 164 (2022) 108466

7

used the World Wildlife Fund Terrestrial Ecoregions Map which clas
sifies vegetated land into 14 biomes (Olson et al., 2001). For comparison 
purposes, we made use of ancillary measurements collected by each of 
the datasets, specifically land type classification from the LUCAS data
set, grouped into broadleaved, mixed forest, coniferous, mixed grass, 
pure grass and re-vegetated. Lastly, to evaluate the range of 
model-predicted turnover time of soil C assuming that C stocks are at 
equilibrium, we used a global dataset of N = 470 estimates of turnover 
time (Chen et al., 2013). Turnover time is defined here as SOC/respi
ration rate, assuming that steady-state has been reached (Sierra et al., 
2017). 

3. Results 

We estimated the mean parameter sensitivity of C stocks in the five 
model pools at equilibrium for Millennial V1 and for the V2 model 
variants. Millennial V1 parameter sensitivity is lower than that of the V2 
variants for all pools except for the microbial biomass pool and LMWC 
(Fig. S2). The Millennial V2 variants have similar sensitivity to param
eters, with the ECA kinetics variant having slightly greater sensitivity of 
C stocks to parameter values across all pools except the microbial 
biomass pool. The mean collinearity of parameters was highest for the 
Millennial V2 variant with linear kinetics, followed by Millennial V1. 
Note that Millennial V1 has one fewer fittable parameter than the V2 
variants which may lower the collinearity index for V1 (Fig. 2). How
ever, Millennial V2 with Michealis-Menten kinetics had the lowest 
collinearity of all the model variants for all pools, indicating that its 
parameters are more identifiable compared to the other model variants. 
Using this index, we can select V2 MM as the model which is comparable 

to the others in terms of parameter sensitivity, but has the most iden
tifiable parameters, lending itself to easier parameter fitting. 

Steady-state solutions of the model are sensitive not only to the 
choice of parameters, as demonstrated above, but also the model inputs, 
including soil temperature, volumetric water content (VWC), and net 
primary production (NPP). Sensitivity analyses conducted across a range 
of model inputs show that increasing soil temperature causes all model 
pools to decrease in size, as a result of an increase in the reaction rate of 
depolymerization and uptake, according to the Arrhenius equation 
(Fig. 3a). Except for the microbial biomass and LMWC pools (Fig. S3), all 
model pools are smaller at high VWC, which tends to increase the rate of 
C cycling and turnover in general (Fig. 3b). Conversely, all model pools 
have a positive relationship with NPP, with all pools increasing in 
response to increased plant inputs. The relationship with NPP is not 
linear, however, but rather begins to saturate at the upper end of the 
observed NPP range because microbial biomass growth increases 
decomposition that slows the C accumulation (Fig. 3c, Fig. S3). 
Increasing the percentage of clay and silt present in soil corresponds to 
an increase in SOC by decreasing the C that is available to microbes via 
mineral association until soil minerals become saturated. Conversely, 
increasing pH has the opposite effect, affecting a parameter that inhibits 
sorption to minerals which causes SOC to become available to microbes. 
In comparison to the Century model, effects of model inputs on steady 
state SOC are qualitatively similar for soil temperature and VWC 
(Fig. S4). The Century model relationship between SOC and NPP is 
linear, reflecting the first-order kinetic relationship between inputs and 
decomposition rates. Further, the relationship between SOC and the 
percentage of clay and silt increases without saturating at values of clay 
and silt approaching 100% (Fig. S4). 

When using all the data together (N = 1329), the Millennial V2 
model predicted SOC (RMSE = 3.3 kg C m− 2, AIC = 675, R2

in = 0.31, R2
out 

= 0.26) better than the Century model (RMSE = 3.4 kg C m− 2, AIC =
696, R2

in = 0.21, R2
out = 0.18; Table 3) across sites. The Millennial V2 

model also outperformed the Century model when fit to each dataset 
separately (Table 3, Fig. 4). Of the three datasets used, both the 
Millennial V2 and Century models were able to explain the greatest 
amount of site-level variation in SOC, MAOM and other fractions for the 
VR dataset, and the least for the LUCAS dataset (Table 3, Table 4). We 
made very weak assumptions about the prior range of the parameters 
(-Inf/0, 1/Inf), yet most parameters fit to Millennial V2 were within the 
same order of magnitude as the default parameters and similar across 
datasets (Table A1). The half-saturation constant for microbial uptake 
had a large absolute and relative change from the default parameters 
after fitting. Other large absolute changes included the activation energy 
of uptake and decomposition, as well as the half-saturation constant for 
decomposition. On average, the LUCAS dataset’s fitted parameters were 
less similar to the default parameters than those of the VR and KG 
datasets, suggesting that SOC stocks in the LUCAS dataset respond 

Table 4 
Millennial V2 model fit of MAOM and non-MAOM (POM + AGG + LMWC +
MIC) pools to measured values. R2

in = coefficient of determination of the training 
dataset (i.e., in-sample), R2

out = coefficient of determination of the test dataset (i. 
e., out-of-sample), RMSE = root mean square error, MAE = mean absolute error, 
MBE = mean bias error. NS = not significant at the P < 0.05 level. N is the 
number of SOC measurements included in each dataset.  

Dataset Pool N R2
in  R2

out  MAE (kg C 
m− 2) 

MBE (kg C 
m− 2) 

All MAOM 1329 0.40 0.27 1.58 − 1.14  
non- 
MAOM 

670 0.17 0.24 0.82 − 0.077 

VR MAOM 495 0.42 0.37 0.89 − 0.39  
non- 
MAOM 

495 0.29 0.16 0.52 − 0.24 

KG MAOM 659 0.40 0.31 1.38 − 0.62 
LUCAS MAOM 175 0.15 0.09 1.99 − 0.77  

non- 
MAOM 

175 NS NS 2.20 − 0.33  

Fig. 2. Mean collinearity of parameters for four 
model variants, Millennial V1 (Original; 23 parame
ters), V2 with Linear kinetics (V2 LIN; 24 parameters), 
V2 with Michaelis-Menten kinetics (V2 MM; 24 pa
rameters), and V2 with Equilibrium Chemistry 
Approximation kinetics (V2 ECA; 24 parameters). 
Collinearity is measured using the index γ with a 
lower bound of 1 and an upper bound of infinity, 
where a change in one parameter can be compensated 
by 1-1/γ by changing other parameters (Section 2.4). 
Values >106 are common for models with many pa
rameters (Soetaert, 2016). AGG = aggregates, LMWC 
= low molecular weight C, MAOM = miner
al-associated organic matter, MIC = microbial 
biomass, POM = particular organic matter. The error 
bars represent the standard error of different collin
earity indices estimated for 100 randomly-selected 
subsets of parameters.   
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differently to the observed environment. Fitted Century model param
eters were also within the same order of magnitude as the default pa
rameters, which were taken from Parton et al. (1987) and Del Grosso 
et al. (2005). Similar to Millennial V2, the Century model had more 
absolute and relative variation in parameters controlling responses to 
the environment, such as temperature and soil moisture parameters 
(Table A2). 

Millennial V2 and Century generally capture the total soil C stock 
across a latitudinal gradient (Fig. 5, Fig. S5), although both models tend 
to underestimate the amount of MAOM at high latitudes (Fig. 6). It is 
important to note however, that while the other latitude bins have be
tween 40 and 762 sites, the − 50◦S and 70◦N latitude bins have only 4 
and 8 sites represented, respectively. In the observed data, MAOM 
makes up 73% (median; range: 2–100%) of the soil C stock, while in 
Millennial V2 MAOM is 68% (median; range: 35–69%) of SOC. The 
Century model does not explicitly simulate a MAOM fraction, but its two 
slowest turnover pools, PASSIVE and SLOW, account for 64% (median; 
range: 59–66%) and 32% (median; range: 29–33%) of the soil C stock, 
respectively. The Millennial model’s non-MAOM pools include stable 
microaggregates (or heavy POM; 24% median; range: 23–34%), POM 
(or light POM; 8% median; range: 7–28%), microbial biomass C (0.1% 
median; range: 0.04%–2.2%), and LMWC (0.1% median; range: 
0.04–1.3%; Fig. 6). Literature estimates of microbial biomass C vary 
widely, from 0.4% of total SOC in Fahey et al. (2005) to 2% in Walker 
et al. (2018). However, our estimate is low compared to existing 
global-scale estimates of ~2% for 0–30 cm (Xu et al., 2013). LMWC 

Fig. 3. Response of each SOC pool of Millennial V2 evaluated at steady state with Michaelis-Menten kinetics to (a) soil temperature, (b) volumetric water content 
(VWC) (c) net primary production (NPP), (d) clay and silt percentage, and (e) pH. 
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Fig. 4. The relationship between modeled C stock by Century and Millennial Model V2 compared with observed C stock in the MAOM pool (yellow symbols) as well 
as total SOC stock (blue symbols). The Century model estimates SOC only. Model fit is shown for all three datasets combined (All) as well as for each dataset 
separately. The dashed line is the 1:1 line. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Boxplots showing the distribution of the observed (green), Century 
model-predicted (pink), and Millennial V2 model-predicted (orange) total C 
stock for each 10◦ bin of latitude. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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could be analogous to dissolved organic C (DOC) if there is enough 
moisture in the soil matrix, and if we do not consider DOC molecules 
that are too large to be taken up by microbes. Measured DOC concen
trations from a recent global synthesis are roughly consistent with 
Millennial V2 estimates, with a range of 0.1%–3% of SOC depending on 
the biome, with a global average of 0.2% (Guo et al., 2020). Including 
microbial biomass and DOC measurements as constraints could improve 
global predictions by informing the uptake and turnover parameters that 
control exchanges between these and other modeled pools. 

Millennial V2 generally captures the distribution of total SOC stocks 
across different biomes (Fig. 7, Fig. S6) as well as the breakdown be
tween MAOM and non-MAOM fractions (Fig. 8, Fig. S7). The Millennial 
V2 model predicts total SOC stocks within the range of observed values 
for all but the montane biome (Fig. 7), although there is much more 
variation when each dataset is considered individually (Fig. S8). The 
Century model does not estimate the C stock in each soil fraction, but 

Millennial V2 is generally within the range of the observed values of C 
stocks in the MAOM and non-MAOM fractions (Fig. 8, Fig. S9). Here it is 
possible to identify the fraction which contributes to poor model per
formance in certain biomes. For example, Millennial V2 predicts MAOM 
C stocks well in tropical grasslands, but overestimates C stocks in the 
non-MAOM fraction. Conversely, Millennial V2’s poor performance in 
the montane and desert biomes is due to the model systematically 
underpredicting the MAOM fraction in these biomes. 

The Millennial V2 model may capture the observed variation in C 
stocks across a gradient of NPP better than the Century model (Fig. S10). 

Fig. 6. Barplots showing the median total C stock that is observed, Century model-predicted, and Millennial V2 model-predicted, for each 10◦ bin of latitude. Colors 
show the distribution of C pools in the observed data (gray = MAOM, yellow = non-MAOM), Century (light blue = PASSIVE, orange = SLOW, dark red = ACTIVE, 
pink = Structural Litter, purple = Metabolic Litter), and Millennial V2 (gray = MAOM, dark blue = Aggregates, green = POM, light orange = LMWC, black =
microbial biomass). Metabolic Litter, LMWC, and microbial biomass pools may be too small to distinguish. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

Fig. 7. Box plots showing the distribution of observed (green), Century model- 
predicted (pink), and Millennial V2 model-predicted (orange) total C stock for 
each biome. Biome descriptions can be found in Table S1. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 8. Box plots showing the distribution of observed (green) and Millennial 
V2 model-predicted (orange) C stock for each biome in the MAOM pool and 
non-MAOM pools. The Century model is not shown because it only predicts 
total C stock. Biome descriptions can be found in Table S1. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the 
Web version of this article.) 
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This may be due to the difference in the way NPP and C stock are rep
resented in the two models. In the Century model, there is a constrained 
linear relationship between NPP and C stock (Fig. S4c), whereas 
Millennial V2 has a less linear relationship (Fig. 3c, Fig. S3c). The model 
also provides a reasonable distribution of turnover times compared to a 
global distribution of turnover times measured using SOC/respiration 
rate for the top 20 cm under an assumption of steady state (Fig. 9). 
Though the represented depth varies for different sites in our dataset, 
the median depth represented in the dataset was 20 cm (6 cm–62 cm). 
The median turnover time of Millennial V2 (17.2 years) is higher than 
that of Chen et al. (2013) (11.2 years), but it is much more similar to the 
observations than the median turnover time of the Century model (37.0 
years). 

Finally, we used GBM models described in Section 2.5 trained on 
each of the three datasets, to quantify the performance of a purely 
empirical model in contrast to process-based models like Millennial V2 
and Century, as well as the extent to which the environmental forcings 
(e.g., NPP, soil temperature, pH) are related to the SOC stock. We found 
that the GBM model was able to predict C stocks better than the process- 
based models. Similar to Millennial V2 and Century, the GBM model was 
most able to predict C stocks for the sites in the VR dataset, followed 
closely by those in the KG dataset, and finally those in the LUCAS dataset 
(Table 5, Fig. S11, Fig. S12). For the VR and KG datasets, the model 
forcing with the greatest relative influence on the C stock was the soil 
temperature. Unlike the other two datasets, C stocks in the LUCAS 
dataset were not influenced by soil temperature, rather relying more 
heavily on the soil pH and a combination of the other forcings (Table 5). 

4. Discussion 

4.1. Millennial V2 and Century model performance 

Millennial V2 simulates spatial variation in soil C stocks, including 
measurable soil fractions, better than the widely-used Century model, 
based on several model performance metrics, including RMSE, AIC, 
MAE, MBE and R2 (Table 3). Millennial V2 also predicts the C contained 
within the MAOM pool, which generally contains older organic material 
than other fractions, especially at depth (Conen et al., 2008; Hicks Pries, 
2017; Poeplau et al., 2018). MAOM was generally observed to be the 
largest soil C pool across all dataset sites. Because Millennial V2 more 
explicitly simulates processes relating C pools to mineral capacity, pH, 
temperature and soil moisture, it better predicts not only the mean C 
stock across different sites (Fig. 4), but also better predicts the distri
bution of C stocks across latitudes (Fig. 5), within different biomes 
(Fig. 7) and across gradients of plant productivity (Fig. S10). We show in 
our sensitivity analyses (Fig. 3c) that the Century model has a first-order 
relationship relating plant inputs to rates of C gain and loss. This is a 
common feature of models without explicit representation of 

microorganisms (Georgiou et al., 2017). Millennial V2 also considers 
NPP to be positively related to C stock, all else equal, but this relation
ship is both non-linear and strongly modified by other environmental 
factors, such as soil temperature and pH. As a result, the emergent 
relationship between NPP and C stock is less constrained to a positive 
linear relationship, as in the Century model (Fig. S4c), and can better 
match observations (Fig. S10; Georgiou et al., 2017). 

Millennial V2 predicts C stocks across different biomes better than 
the Century model, but still has significant biases in some biomes. For 
example, Millennial V2 does not capture the observed distribution of C 
stocks in montane biomes (Fig. 7). However, while it remains difficult to 
diagnose model failures in Century, the measurable pool framework of 
the Millennial model allows us to better understand what processes 
cause model failures. For example, we show that Millennial V2 accu
rately predicts the larger particle size fractions (non-MAOM) in montane 
biomes, and rather that it is the MAOM fraction that is consistently 
underestimated by Millennial V2 (Fig. 8). This may have to do with the 
weathering status and mineralogy of montane environments which may 
have a different relationship with clay than do other biomes. It is 
important to note that the biomes for which Millennial V2 (and Century) 
do not predict C stocks well are also the biomes with the fewest obser
vations, particularly the montane biome (N = 9). Temperate coniferous 
forests (N = 30), deserts (N = 63), boreal forest (N = 111), and tropical- 
moist broadleaved forests (N = 171) are also underrepresented in 
certain datasets (Fig. S8). Therefore, mismatches in distributions of 
observed and predicted C stocks could be attributed to sample size ef
fects, understanding that C stocks have a high spatial heterogeneity 
within biomes. 

The choice of dataset affects the accuracy of both Millennial V2 and 
Century, not only due to sample size effects but due to the source and 
quality of ancillary data used. We used a GBM model to empirically 
quantify the relationship between the environmental factors used as 
model forcing (i.e., soil temperature, clay and silt content, NPP, soil 
moisture, pH) and C stocks (Table 5). Using this approach, it is clear that 
there is less of a relationship between environmental factors at LUCAS 
sites and the measured soil C stock, with only 15% of cross-validated 
variance explained, compared to over 60% for the other two datasets. 
The LUCAS sites also rank the influence of environmental factors on C 
stock differently than the other datasets, with pH being by far the most 
influential factor at LUCAS sites, compared to soil temperature at other 
sites. This may explain why Millennial V2 only explains 4% of variation 
in C stocks at LUCAS sites (compared to 31% and 46% for the other two 
datasets), and why a different microbial-mineral model (Robertson 
et al., 2019) fit to LUCAS site data has a similar coefficient of determi
nation, although models are generally able to capture mean C stocks 
across biome (Figs. 7, 8) and land type (Fig. S13) classifications. It is not 
immediately clear what may cause greater heterogeneity in the LUCAS 
dataset, but the fact that SOC stocks are more dependent on pH than soil 
temperature suggests a potential role of land use history and past 
management practices. 

Past and current land management may be a source of uncertainty 
across all the datasets, as well as unmet assumptions of steady state. For 
example, the KG dataset contains 284 cropland sites, which are likely to 
have changing C stocks. When we repeat our analysis excluding these 
sites (Table S2, Table S3), some model performance metrics improved 
while others worsened (Table S4, Table S5). In general, the coefficients 
of determination improved while metrics based on error worsened. 
Although we did not see clear evidence for model improvement by 
excluding these sites, the difference in model performance supports the 
idea that land use history and management may have important effects 
on the spatial variation in C stocks that cannot be captured by models 
that do not represent these processes. 

4.2. Comparing process-based models to empirical models 

The GBM model predicts steady-state C stocks with higher accuracy 

Fig. 9. Density plots showing the distribution of turnover times in Chen et al. 
(2013) (denoted Observed; median [1st, 3rd quartiles] = 11.2 [7.4, 17.5]), the 
Century model (37.0 [31.6, 45.7]), and the Millennial V2 model (17.2 
[11.6, 23.5]). 
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than both the Millennial V2 and Century models, raising the question, 
why not replace process-based models entirely with empirical models? 
One reason is that a process-based model can be more generalizable. For 
example, when we used parameters that were fit to one dataset to pre
dict stocks from a different dataset (Table S6), Millennial V2 was able to 
explain 3–46% of variation in the other two datasets. Conversely, the 
GBM model could only explain 0–22% of variation in the other datasets 
(Table S6). Therefore, Millennial V2 predictions made by model pa
rameters that have been fit to a subset of global-scale data are likely 
more predictive than those made by an empirical model fit to the same 
data. Because process-based models are more generalizable, they may be 
more reliable under novel conditions, whereas empirical models are 
most useful for interpolation. The same principle can explain why a 
more process-rich model like Millennial V2 appears to outperform a 
more empirical model such as Century (Fig. 4). 

Another benefit of process-based models is the ability to predict 
quantities other than the one that has been fitted. For example, by fitting 
the model to C stocks, we also predicted reasonable turnover times, 
which are related to both the stock size and the emission (respiration) 
rate. Because C emissions are arguably the most important model output 
for understanding climate feedbacks from soil, a model which uses 
physical understanding to link stocks and emissions is inherently more 
valuable than an empirical model of only C stocks. Though not tested 
here, previous work on microbial soil models has also shown that 
process-based models can capture seasonal hysteresis in C fluxes where 
empirical models (with no explicit representation of time) cannot 
(Abramoff et al., 2017). Yet, empirical models may be able to improve 
process-based models by accelerating spin-up and parameterization, or 
by replacing certain model components. 

4.3. Future data and model needs 

The large variation in model performance depending on the sample 
size or the data source underscores the need for abundant and stan
dardized data. Across these datasets, MAOM was measured using three 
different particle size thresholds (<50, 53, and 60 μm), and POM and 
aggregates were not separated in the larger particle size fraction. Mea
surements of small C pools that are sensitive to environmental factors, 
such as microbial biomass and low molecular weight C, were largely not 
available. Although microbial biomass is generally less than 5% of total 
SOC (Xu et al., 2013), it is the primary driver of C emissions from the 
soil, and small changes to this pool may have large effects on total SOC 
and C emissions. Recent work has also shown that DOC has a large po
tential to contribute to C storage, especially in the mineral fraction 
(Abramoff et al., 2021). Therefore, large, standardized datasets of 
Millennial V2 pools (Fig. 1) and fluxes (e.g., respiration rate, enzyme 
activity) will allow for better global-scale parameterization of the 
model. 

Although Millennial V2 is more complex than many soil models, it 
has structural limitations that would benefit from future work, such as 
consideration of nitrogen (N) and phosphorus (P) limitations to C stor
age (Davies et al., 2020; Spohn, 2020), and depth-dependence of mi
crobial activity and substrate availability (Dove et al., 2021). We further 
acknowledge that this study evaluates the spatial variation in C stock 

only, and that the temporal dynamics of Millennial V2 require further 
testing. Several long-term experiments exist across the world (Richter 
et al., 2007), but most have not made measurements of soil fractions at 
different time periods. Future measurement campaigns, such the Joint 
Research Center’s next planned sampling campaign for the LUCAS sites, 
will add much needed temporal resolution to the existing dataset. 
Recent and developing spectroscopy-based methods may also allow for 
low-cost estimates of soil fractions from ongoing experiments as well as 
archived soils (Baldock et al., 2013; Ramírez et al., 2021; Sanderman 
et al., 2021), creating datasets of repeat measurements for model eval
uation. C models are constantly evolving to represent the most updated 
knowledge of the soil system. We now seek to associate that knowledge 
more directly with measurable quantities, both to make models easier to 
constrain and also to ensure that model predictions are accurate for the 
right reasons, rather than the result of compensating biases. We hope 
that Millennial V2 and similarly representative models will allow for 
more realistic multiple constraints on the next generation of soil 
biogeochemical models. 

Code and data availability 

The code for the models tested here are available on the github re
pository: https://github.com/rabramoff/Millennial. Millennial V1 and 
V2 are available in both R and Fortran. We have also included the scripts 
used to produce the figures and analyses presented in this manuscript as 
R markdown notebooks within the same repository: https://github. 
com/rabramoff/Millennial/tree/master/R/analysis. Some small data 
files are also included in the same folder. Other datasets are described in 
the manuscript with citations and when available their URLs are also 
provided in the analysis code. 
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about model formulation. R.Z.A. was supported by the French govern
ment grant “Make Our Planet Great Again” and by a Marie Skło
dowska–Curie Individual Fellowship (Grant no. 834-169) from the 
European Union’s Horizon 2020 program. K.G. was supported as a 
Lawrence Fellow at Lawrence Livermore National Lab (LLNL) by the 
LLNL-LDRD Program under Project No. 21-ERD-045 and the US DOE 
Office of Science, Office of Biological and Environmental Research, 
Genomic Science Program as part of the LLNL Microbes Persist Scientific 
Focus Area, SCW1632. Work at LLNL was conducted under the auspices 
of US DOE Contract DE-AC52-07NA27344. X.X. has been supported by 
the ORNL Terrestrial Ecosystem Science Scientific Focus Area (ORNL 
TES-SFA) and NGEE Arctic projects and DE-SC0014416, which are 
supported by the Office of Biological and Environmental Research in the 
Department of Energy Office of Science. 

Table 5 
Performance metrics of the gradient-boosted machine learning algorithm prediction of soil C stock and the relative influence of different model forcings for the 
different datasets. R2

in = coefficient of determination of the training dataset (i.e., in-sample), R2
out = coefficient of determination of the test dataset (i.e., out-of-sample), 

RMSE = root mean square error, MAE = mean absolute error, Soil Temp = soil temperature, NPP = net primary production.   

Relative Influence (%) 

Dataset R2
in  R2

out  RMSE (kg C m− 2) MAE (kg C m− 2) Soil Temp (◦C) pH Clay & Silt (%) Soil Moisture (mm3 mm¡3) NPP (g C m¡2 d¡1) 

All 0.66 0.48 2.74 1.79 38.8 26.5 13.5 11.8 9.48 
VR 0.83 0.68 1.21 0.87 40.0 21.2 16.4 7.33 15.1 
KG 0.78 0.61 2.34 1.59 31.0 16.9 14.7 25.0 12.3 
LUCAS 0.34 0.15 4.76 3.72 7.03 40.2 19.6 11.1 22.1  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.soilbio.2021.108466. 

Appendices. 

Appendix A  

Table A1 
Parameters, constants, pools, fluxes and input variables used in the Millennial model V2. “Calculated” variables are pools or fluxes whose values are a function of 
parameters, initial values, and time.  

Equation 
Number 

Variable Definition Default 
values 

Fit Values: 
All 

Fit Values: 
VR 

Fit Values: 
KG 

Fit Values: 
LUCAS 

Units Sources 

1, 7 pi Proportion of C input allocated to 
POM 

0.66 - - - - - Oleson et al. 
(2013) 

1, 19 pa Proportion of aggregate-C 
breakdown allocated to POM 

0.33 0.33 0.40 0.34 0.33 - Oleson et al. 
(2013) 

2 Kpl Half-saturation constant of POM 
decomposition to LMWC 

10,000 6,443 8,617 7,735 12,094 g C m− 2 Wang et al. 
(2014) 

3 apl Pre-exponential constant for Vpl 2.5 × 1012 1.8 × 1012 2.6 × 1012 2.3 × 1012 1.8 × 1012 g C m− 2 (g C 
m− 2) − 1 d− 1 

Abramoff et al. 
(2017) 

3 Eapl Activation energy for Vpl 64,320 63,909 63,339 64,064 64,646 J mol− 1 Abramoff et al. 
(2017) 

3 R Gas constant 8.31446 - - - - J K− 1 mol− 1 Abramoff et al. 
(2017) 

4, 15 φ  total porosity 0.60 0.60 0.62 0.61 0.60 mm3 mm− 3 site-specific 
5 kpa Rate of aggregate formation from 

POM 
0.020 0.018 0.012 0.014 0.026 d− 1 Segoli et al. 

(2013) 
6 kb Breakdown rate of soil aggregate 

carbon 
0.019 0.020 0.026 0.023 0.015 d− 1 Segoli et al. 

(2013) 
7, 19, 20 pb Partitioning of necromass to MAOM 

and LMWC 
0.50 0.50 0.52 0.50 0.61 - - 

8 kl Leaching rate of LMWC 0.0015 - - - - d− 1 Abramoff et al. 
(2018) 

10, 12 Kld Specific desorption rate for LMWC 
and MIC 

1 - - - - mg C L− 1 d− 1 Wang et al. 
(2014) 

10 p1 Coefficient for estimating the 
binding affinity for LMWC sorption 

0.186 0.12 0.078 0.21 0.38 - Mayes et al. 
(2012) 

10 p2 Coefficient for estimating the 
binding affinity for LMWC sorption 

0.216 - - - - - Mayes et al. 
(2012) 

10 pH pH 7 - - - - - site-specific 
11 BD Bulk density 1000 - - - - kg soil m− 3 site-specific 
11 pc Coefficient for estimating the 

maximum sorption capacity 
0.86 - - - - - Georgiou et al. 

(2021) 
11 % 

claysilt 
Percent of soil that is in the clay and 
silt fractions 

80 - - - - % site-specific 

13 Klb Half saturation constant for 
microbial uptake 

290 774.6 710.8 654.8 100.3 g C m− 2 Abramoff et al. 
(2017) 

14 alb Pre-exponential constant for Vlb 2.6 × 1012 2.3 × 1012 1.2 × 1012 2.2 × 1012 7.2 × 1012 g C m− 2 (g C 
m− 2) − 1 d− 1 

Abramoff et al. 
(2017) 

14 Ealb Activation energy for Vlb 60,260 57,865 60,428 60,058 57,795 J mol− 1 Abramoff et al. 
(2017) 

15 λ  Dependence of rate on matric 
potential 

2.1 × 10− 4 - - - - kPa− 1 Ghezzehei et al. 
(2018) 

15 ka,min Minimum relative rate in saturated 
soil 

0.2 - - - - - Ghezzehei et al. 
(2018) 

15 φ  matric potential − 15 - - - - kPa site-specific 
16 kbd Microbial death rate 0.0036 0.0045 0.0044 0.0040 0.0036 m2 gC− 1 d− 1 Abramoff et al. 

(2017) 
18 kma Rate of aggregate formation from 

MAOM 
0.020 0.0048 0.0052 0.0038 0.0052 d− 1 Segoli et al. 

(2013) 
21, 22 CUEref Reference CUE 0.60 0.19 0.53 0.40 0.52 -  
21, 22 CUET CUE dependence on temperature 0.012 - - - - ◦C− 1  

21, 22 Tae-ref Reference temperature for 
temperature control on CUE 

15 - - - - ◦C  

1, 2, 5 P POM      g C m− 2 Calculated 
7, 8, 9, 13 L LMWC      g C m− 2 Calculated 
2, 13, 16, 20 B Microbial biomass      g C m− 2 Calculated 
9, 12, 18, 19 M MAOM      g C m− 2 Calculated 
6, 17 A Aggregate C      g C m− 2 Calculated 
1, 6, 17, 19 Fa Aggregate breakdown      g C m− 2 d− 1 Calculated 
1, 5, 17 Fpa Aggregate formation from POM      g C m− 2 d− 1 Calculated 
1, 2, 7 Fpl Decomposition of POM into LMWC      g C m− 2 d− 1 Calculated 
7, 8 Fl LMWC leaching loss      g C m− 2 d− 1 Calculated 

(continued on next page) 
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Table A1 (continued ) 

Equation 
Number 

Variable Definition Default 
values 

Fit Values: 
All 

Fit Values: 
VR 

Fit Values: 
KG 

Fit Values: 
LUCAS 

Units Sources 

7, 9, 19 Flm Adsorption of LMWC to minerals      g C m− 2 d− 1 Calculated 
7, 13, 20, 21, 

22 
Flb Uptake of LMWC by microbial 

biomass      
g C m− 2 d− 1 Calculated 

7, 16, 19, 20 Fbm Microbial mortality      g C m− 2 d− 1 Calculated 
12, 19 Fld Desorption      g C m− 2 d− 1 Calculated 
22 Fbg Microbial growth      g C m− 2 d− 1 Calculated 
17, 18, 19 Fma Aggregate formation from MAOM      g C m− 2 d− 1 Calculated 
20, 22, 23 Fmr Microbial respiration      g C m− 2 d− 1 Calculated 
2, 3 Vpl Maximum rate of POM 

decomposition to LMWC      
d− 1 Calculated 

13, 15 Sw,B Water scalar      - Calculated 
2, 4, 5, 6, 8, 9, 

15,18 
Sw,D Diffusion limitation of substrates      - Calculated 

9, 10 Klm LMWC and microbial necromass 
adsorption rate      

d− 1 Calculated 

9, 11 Qmax Maximum sorption capacity      g C m− 2 Calculated 
13, 14 Vlb Potential LMWC uptake rate      d− 1 Calculated 
1, 7 Fi C input      g C m− 2 d− 1 Input 
3, 16, 21, 22 T Soil temperature      ◦C Input 
4, 15 θ  volumetric water content      mm3 mm− 3 Input 
23 CO2 carbon dioxide production      g C m− 2 d− 1 Output   

Table A2 
Parameters, pools, fluxes and input variables used in the Century model. “Calculated” variables are pools or fluxes whose values are a function of parameters, initial 
values, and time.  

Variable Definition Default 
values 

Fit Values: 
All 

Fit Values: 
VR 

Fit Values: 
KG 

Fit Values: 
LUCAS 

Units Sources 

w1 Water scalar parameter 30.0 33.61 17.38 36.97 22.61 - Parton et al. (2010) 
w2 Water scalar parameter 9.00 8.42 10.55 7.77 7.84 - Parton et al. (2010) 
t1 x-axis location of inflection point 15.4 18.08 16.83 15.77 18.15 ◦C Del Grosso et al. (2005) 
t2 y-axis location of inflection point 11.75 12.99 10.39 9.32 13.78 - Del Grosso et al. (2005) 
t3 Distance from the maximum point to the 

minimum point (step size) 
29.7 25.92 30.10 20.98 28.91 - Del Grosso et al. (2005) 

t4 Slope of line at inflection point 0.031 0.038 0.025 0.032 0.035 - Del Grosso et al. (2005) 
c1 Intercept of clay fraction relationship 0.85 0.83 0.85 0.85 0.86 - Parton et al. (1987) 
c2 Slope of clay fraction relationship 0.68 0.67 0.71 0.74 0.60 - Parton et al. (1987) 
kls Turnover rate of structural litter pool 0.01 - - - - d− 1 Parton et al. (1987) 
klm Turnover rate of metabolic litter pool 0.045 - - - - d− 1 Parton et al. (1987) 
ka Turnover rate of active pool 0.020 - - - - d− 1 Parton et al. (1987) 
ks Turnover rate of slow pool 5.0 × 10− 4 6.7 × 10− 4 1.9 × 10− 4 5.2 × 10− 4 4.0 × 10− 4 d− 1 Parton et al. (1987) 
kp Turnover rate of passive pool 2.0 × 10− 5 9.1 × 10− 6 8.2 × 10− 6 1.9 × 10− 5 1.3 × 10− 5 d− 1 Parton et al. (1987) 
pli Proportion of plant residue to structural 

litter pool 
0.66 0.62 0.67 0.64 0.67 - Analogous to Millennial litter 

partitioning assumption 
plma Fraction of metabolic litter to active pool 0.45 - - - -  Parton et al. (1987) 
plsa Fraction of structural litter to active pool 0.5 - - - -  Parton et al. (1987) 
plss Fraction of structural litter to slow pool 0.7 - - - -  Parton et al. (1987) 
psa Fraction of slow pool to active pool 0.42 - - - - - Parton et al. (1987) 
psp Fraction of slow pool to passive pool 0.03 0.020 0.029 0.022 0.041 - Parton et al. (1987) 
ppa Fraction of passive pool to active pool 0.45 - - - - - Parton et al. (1987) 
pap Fraction of active pool to passive pool 0.004 - - - - - Parton et al. (1987) 
LigFrac Fraction of litter that is lignin 0.2 0.20 0.20 0.21 0.20 - Zhang et al. (2018) 
%claysilt Percent of soil that is in the clay and silt 

fractions 
80 - - - - % site-specific 

Fc Field capacity 0.39     mm3 

mm− 3 
Input: observed maximum 
volumetric water content 

Fi C input      g C m− 2 

d− 1 
Input 

T Soil temperature      ◦C Input 
θ  volumetric water content      mm3 

mm− 3 
Input 

StrLitter Structural litter pool      g C m− 2 Calculated 
MetLitter Metabolic litter pool      g C m− 2 Calculated 
ACTIVE Active pool      g C m− 2 Calculated 
SLOW Slow pool      g C m− 2 Calculated 
PASSIVE Passive pool      g C m− 2 Calculated 
St Temperature scalar      - Calculated 
Sw Water scalar      - Calculated 
Ftex Soil texture effect on decomposition of 

active pool      
- Calculated 

Fls Structural litter decomposition flux      Calculated 

(continued on next page) 
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Table A2 (continued ) 

Variable Definition Default 
values 

Fit Values: 
All 

Fit Values: 
VR 

Fit Values: 
KG 

Fit Values: 
LUCAS 

Units Sources 

g C m− 2 

d− 1 

Flm Metabolic litter decomposition flux      g C m− 2 

d− 1 
Calculated 

Fa Active pool decomposition flux      g C m− 2 

d− 1 
Calculated 

Fs Slow pool decomposition flux      g C m− 2 

d− 1 
Calculated 

Fp Passive pool decomposition flux      g C m− 2 

d− 1 
Calculated  

Appendix B 

Century model equations 
Model inputs are identical in description and units to those used in the Millennial model (Table A1). All other parameters are described in Table A2, 

including their default and fitted values for each dataset. 

St =
t2 + t3

π atan[t4 *π (T − t1)]
t2 + t3

π atan[t4 *π (30 − t1)]
[B1]  

Sw =
1

1 + w1*e
− w2 θ

fc
[B2]  

Ftex = c1 − c2 %claysilt 0.01 [B3]  

Fls = StrLitter klsStSw e− 3 LigFrac [B4]  

Flm =MetLitter klmStSw [B5]  

Fa =ACTIVE kaStSwFtex [B6]  

Fs = SLOW ksStSw [B7]  

Fp =PASSIVE kpStSw [B8]  

dStrLitter
dt

= pliFi − Fls [B9]  

dMetLitter
dt

=(1 − pli)Fi − Flm [B10]  

dACTIVE
dt

= (1 − LigFrac)plsaFls + plmaFlm + Fspsa + Fpppa − Fa [B11]  

dSLOW
dt

= LigFrac plssFls + Fa
(
1 − Ftex − pap

)
− Fs [B12]  

dPASSIVE
dt

=Fapap + Fspsp − Fp [B13]  
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