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Abstract Developing and testing decadal‐scale predictions of soil response to climate change is difficult
because there are few long‐term warming experiments or other direct observations of temperature
response. As a result, spatial variation in temperature is often used to characterize the influence of
temperature on soil organic carbon (SOC) stocks under current and warmer temperatures. This approach
assumes that the decadal‐scale response of SOC to warming is similar to the relationship between
temperature and SOC stocks across sites that are at quasi steady state; however, this assumption is poorly
tested. We developed four variants of a Reaction‐network‐based model of soil organic matter and microbes
using measured SOC stocks from a 4,000‐km latitudinal transect. Each variant reflects different assumptions
about the temperature sensitivities of microbial activity and mineral sorption. All four model variants
predicted the same response of SOC to temperature at steady state, but different projections of transient
warming responses. The relative importance of Qmax, mean annual temperature, and net primary
production, assessed using a machine‐learning algorithm, changed depending on warming duration. When
mineral sorption was temperature sensitive, the predicted average change in SOC after 100 years of 5 °C
warming was −18% if warming decreased sorption or +9% if warming increased sorption. When microbial
activity was temperature sensitive but mineral sorption was not, average site‐level SOC loss was 5%. We
conclude that spatial climate gradients of SOC stocks are insufficient to constrain the transient response;
measurements that distinguish process controls and/or observations from long‐term warming experiments,
especially mineral fractions, are needed.

1. Introduction

Soils store more than 2,500 Pg carbon (C) despite the ubiquity of microorganisms that decompose organic
matter (Ciais et al., 2014). Changes in soil organic matter stock over time depend on climate, plant inputs,
and soil properties such as mineral surface area (Belay‐Tedla et al., 2009; Giardina et al., 2014). Under the
2014 Intergovernmental Panel on Climate Change highest emissions scenario (Representative
Concentration Pathway 8.5), global‐average soil temperatures are projected to rise 2.6 to 4.8 °C by 2100
(Friedlingstein et al., 2014). Different Earth system models (ESMs) project widely different soil organic car-
bon (SOC) stock responses to this warming (Knutti & Sedlácek, 2012). Experimental warming studies have
measured changes in SOC stock over timescales of 1–25 years, with most warming experiments spanning
<5 years (Crowther et al., 2016; van Gestel et al., 2018). Moreover, many experiments do not manipulate
both plants and soil at the same time. As a result, some studies use climate gradients to infer the long‐term
influence of temperature on soils (Anderson‐Teixeira et al., 2011; Dunne et al., 2004; Giardina & Ryan,
2000; Post et al., 1982; Raich & Schlesinger, 1992; Sinsabaugh et al., 2017; Townsend et al., 1995;
Zimmermann & Bird, 2012). This space‐for‐time substitution approach is a specific case of the state factor
approach (Jenny & Amundson, 1941) that uses state factor gradients to understand the influence of a factor
on soil properties.

The space‐for‐time approach assumes that the state factor of interest can be empirically or statistically iso-
lated and that there is no significant transient effect, that is, decadal‐scale responses to a change in some fac-
tor are similar to steady state differences among sites differing in that factor (Pickett, 1989). For example, if
decomposition is primarily limited by temperature, then we would expect a cold site to have a larger steady
state carbon stock than an otherwise equivalent warm site. Under these assumptions, warming the cold site
would result in SOC loss, effectively shifting the cold site to have the properties of the warm site. Models that
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parameterize or validate their temperature response using spatial gradients (e.g., Bugmann, 2010; Schimel
et al., 1994; Wieder et al., 2013) implicitly make a space‐for‐time assumption. This assumption has not been
explicitly tested for soil carbon models, though studies have explored more general challenges of modeling
steady state versus transient effects (Carvalhais et al., 2008; Ryan et al., 2018; Sierra & Muller, 2015). We
recognize that spatial gradients can be important tools to benchmark model responses, but they are not
necessarily sufficient to constrain future predictions (Collier et al., 2018; Koven et al., 2017; Torn et al.,
2015). We tested whether fitting an SOC model to sites that span a wide range of temperature and other
environmental conditions would constrain model projections of future warming responses. We hypothe-
sized that models with different representations of soil processes can make identical predictions across space
(where SOC stocks are assumed to be at quasi steady state) yet very different predictions of transient
dynamics due to warming. We test this hypothesis using a Reaction‐network‐based model of Soil Organic
Matter and microbes (ReSOM).

Empirical warming studies ascribe changes in SOC stocks to changes in net primary production (NPP;
Saleska et al., 2002; Harte et al., 2015) or microbial decomposition rates (Melillo et al., 2011;
Schindlbacher et al., 2011; Zhou et al., 2012; Zogg et al., 1997). Soil microbes respond to increased tempera-
ture in various ways, including altered carbon use efficiency, increased mortality rates, faster enzyme activ-
ity rates, and greater instability of enzyme binding sites (Alster et al., 2016; Ratkowsky et al., 2005). Studies
measuring the instantaneous or short‐term (order of days) microbial functional response to changes in tem-
perature have consistently observed increases in extracellular enzyme activity, biomass growth, turnover,
and respiration (Bárcenas‐Moreno et al., 2009; Hagerty et al., 2014; Schindlbacher et al., 2015). In situ and
over longer time periods, observed responses of microbial activity are less consistent. Indeed, studies over
annual‐to‐decadal scales have reported an increase, a decrease, and no change in microbial activity (Frey
et al., 2008; Rousk et al., 2012; Schindlbacher et al., 2011; Zhang et al., 2005). This range of responses suggests
that the length of the warming treatment and initial site conditions affect the microbial response
to warming.

Mineral protection is considered a major control of SOC stocks generally (Giardina et al., 2014; Jagadamma
et al., 2014; Mathieu et al., 2015; Tian et al., 2016; Torn et al., 1997), but the temperature response of mineral‐
associated SOC is not well understood. Soil organic matter, derived from degraded plant C, dead microbial
biomass, and microbial secretions, can be protected from decomposition through complexation with miner-
als or physical isolation in aggregates (Chenu & Plante, 2006; Mikutta et al., 2011; Rumpel & Kögel‐Knabner,
2011; Six et al., 2000; Torn et al., 1997). However, the integrated temperature sensitivity of these mechanisms
depends on the bond types and chemical species involved (Conant et al., 2011). Though thermal indices of
mineral associations can be measured with calorimetric methods (Kleber et al., 2011; Plante et al., 2011),
many models that include mineral associations do not represent their temperature sensitivity (Ahrens
et al., 2015; Wang et al., 2013).

Current global‐scale SOC decompositionmodels simulate mineral protection of SOC implicitly bymodifying
the SOC decomposition rate with an empirical factor based on soil clay fraction (Coleman & Jenkinson,
1996; Hararuk et al., 2015; Parton et al., 1987; Sulman et al., 2014;Wieder et al., 2013). Some site‐level models
explicitly estimate the fraction of SOC sorbed to minerals, using adsorption and desorption rates derived
from laboratory sorption experiments (Dwivedi et al., 2017; Grant et al., 1993; Riley et al., 2014; Tang &
Riley, 2015; Wang et al., 2013). Sorption can be calculated by imposing rates of the forward and reverse reac-
tions or by using the Equilibrium Chemistry Approximation (ECA; Tang & Riley, 2013; Zhu et al., 2017). The
ECA method accounts for the substrate concentration in solution and the total mineral surface area
expressed as a sorption capacity. The advantage of this approach is that it can estimate the saturation state
and temperature effects in a dynamic and chemically explicit way (Kalbitz et al., 2000; Pignatello, 1999).
Even among models that use explicit sorption equations, however, the formulations and parameters for
mineral sorption vary, which results in differing temperature responses associated with mineral sorption
(Sulman et al., 2018).

To explore how warming could affect future SOC stocks, we developed four model variants of ReSOM
(abbreviated NN, TN, TD, and TI) to test how different assumptions about the temperature sensitivity of
microbial activity and mineral association affect the response of SOC stocks to warming (Table 1). The
NN model assumes that neither microbial activity nor mineral sorption is temperature sensitive. The TN
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model assumes that microbial activity is temperature sensitive but mineral sorption is not. In reality, the
temperature sensitivity of microbial activity is likely in between these two extremes, with incomplete
microbial acclimation lowering the apparent temperature sensitivity to rapid warming. The TD and TI
models both assume that microbial activity and mineral sorption are temperature sensitive but differ in
the temperature sensitivity of mineral sorption as follows. The TD model assumes that adsorption to
minerals decreases with warming, and the TI model assumes that adsorption to minerals increases with
warming. These two variants reflect assumptions about the dominant type of mineral‐association and
their hypothesized temperature sensitivity (i.e., primarily exothermic [TD] and endothermic [TI]
reactions; Conant et al., 2011), where the TN model represents the null hypothesis that mineral‐
association is not temperature sensitive (Nguyen et al., 2019). We used a large data set to parameterize
ReSOM, to ensure that it could match observations spanning a wide range of climate and edaphic
conditions. We predicted SOC stock at 24 sites along a 4,000‐km spatial gradient in South America, spanning
11 soil orders, a 20 °C range in mean annual temperature, and a 2,200‐mm range in annual precipitation
(Doetterl et al., 2015). We then ran the four model variants for 100 years under a sustained 5 °C warming
to compare the warming responses between model variants.

2. Methods
2.1. Data Set

We used previously published measurements of near‐surface SOC stocks at 24 sites along ‐a 4,000 km South
American transect (Doetterl et al., 2015). This data set represents a wide range of relevant state factors: cli-
mate, mineralogy, and NPP. Hereafter, we refer to this data set as D2015 and use SOC and SOC stock inter-
changeably, unless otherwise stated. The D2015 data set contains measurements of mean annual
temperature (MAT), mean annual precipitation (MAP), annual plant biomass increment, elevation, SOC,
and a variety of soil chemistry and texture information (Table S1 in the supporting information). We derived
the model forcing (MAT, NPP, and maximummineral sorption capacity [Qmax]) from this data set. We used
mean annual plant biomass increment (kg ha−1 yr−1) as a proxy for annual NPP at each site and assumed
that dry plant biomass is 44% carbon (Harmon, 2013). We performed a sensitivity analysis to estimate the
effect of this assumption on predicted SOC (Text S1 and Figure S1). We estimated Qmax (g C eqv/m−2) for
each site from observed carbon (g C/m−2) in the mineral fraction, measured using density fractionation,
and the fraction of themineral surface occupied by SOC, or saturation fraction. Because saturation data were
not available, we fitted the saturation fraction as a parameter during the multiparameter optimization
described in section 2.3. It would be ideal to estimate Qmax from relationships with variables that are not
affected by organic matter stocks, such as geochemical variables. But these types of relationships have not
yet been developed, and the data that could be used to build them are sparse across soil types
(Jagadamma et al., 2012, 2014; Mayes et al., 2012). The model does not take MAP as a direct input, but mean
annual plant increment and MAP are positively correlated with an R2 of 0.89 (Figure S2).

Table 1
Description of Model Variants

Variant no. abbreviation Microbial activity assumption Mineral sorption assumption Plot color

1: NN Not temperature sensitive Not temperature sensitive

2: TN Temperature sensitive Not temperature sensitive

3: TD Temperature sensitive Temperature sensitive: adsorption decreases with warming

4: TI Temperature sensitive Temperature sensitive: adsorption increases with warming
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2.2. Model Description

The ReSOM model was originally developed in Tang and Riley (2015). We here developed four new var-
iants of the ReSOM model with different process‐level assumptions about microbial and mineral sorption
temperature sensitivity. Throughout the text, we will refer to the model variants using their two‐letter
abbreviations (Table 1). The ReSOM model represents microbial activity and mineral sorption as poten-
tial controls of the emergent decomposition rates and thus SOC stocks. The model represents five carbon
pools: polymers, monomers, microbial structural biomass, microbial reserve biomass, and extracellular
enzymes (Table 2). Pool, flux, and parameter values are defined in Tables 2 and S2. All units are given
in Table S2. For full equations, additional parameters, and model development, see Tang and
Riley (2015).

The ReSOM model computes depolymerization of polymers, sorption of monomers and enzymes, and
uptake of monomers (i.e., microbial assimilation) using equilibrium chemistry approximation (ECA)
kinetics, a generalization of Michaelis‐Menten (MM) kinetics (Tang & Riley, 2013). ECA is more accurate
than MM kinetics in approximating the law of mass action kinetics, which underlies both approaches
(Michaelis & Menten, 1913; Tang, 2015; Tang & Riley, 2013). ECA kinetics represents decomposition and
substrate uptake as a competition between minerals and SOC for enzymes, and minerals and microbes for
low molecular weight C, respectively. Two advantages of the ECA approach are the ability to (i) include dis-
tinct temperature‐dependent effects on mineral sorption and microbial processes (i.e., decomposition,
uptake, and maintenance) based on well‐established kinetic theory and (ii) represent the multi‐consumer,
multi‐substrate competitive environment in a computationally efficient manner. Thus, depolymerization
(FS) and uptake (FC) are defined as

FS ¼ ESVE;max

kES 1þ S
kES

þ E
kES

þ M
kME

� � (6)

FD ¼ zBDVB;max

kBD 1þ D
kBD

þ zB
kBD

þ M
kMD

� � (7)

where E is the extracellular enzyme pool, S is the polymeric organic carbon pool, B is the structural

Table 2
Equations Governing the Change in Each Carbon Pool Over Time in the ReSOM Model. All pools are in units of carbon mass per soil volume (g C/m−3).

Pool Description Differential equation

S polymeric organic carbon
dS
dt ¼ IS−FS þ γB1Bþ f EγEE (1)

D monomeric organic carbon
dD
dt ¼ ID þ FS−FD þ γB1X þ 1−f Eð ÞγE (2)

X reserve microbial biomass
dX
dt ¼ YXFD− κ−gþ γB1ð ÞX (3)

B structural microbial biomass
dB
dt ¼ g−γB1ð ÞB (4)

E extracellular enzymes
dE
dt ¼ pEB−γE (5)

where
IS polymeric input flux (g C m−3 day−1)
ID monomeric input flux (g C m−3 day−1)
FS polymeric depolymerization flux (g C m−3 day−1)
FD monomeric uptake flux (g C m−3 day−1)
YX yield coefficient for reserve biomass (unitless)
fE fraction of decayed extracellular enzymes contributing to the polymer pool (unitless)
γB1 microbial mortality rate (day−1)
γE enzyme turnover rate (day−1)
κ metabolic turnover rate (day−1)
g growth rate (day−1)
pE enzyme production rate (day−1)
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microbial biomass pool, D is the monomeric organic carbon pool, and M is the mineral sorption capacity
(i.e., Qmax), Vmax is the maximum rate of each process, z is a scaling parameter for transporter density,
and k is the affinity parameter for decomposition (kES), uptake (kBD), sorption to enzymes (kME), and
sorption to monomers (kMD).

Plant inputs estimated from site‐level NPP are partitioned (Tang & Riley, 2015) into polymer and monomer
pools, respectively, where the polymer pool represents polymeric compounds in litter (e.g., cellulose, hemi-
cellulose, and lignin) and the monomer pool represents intracellular material, easily leached monomeric
compounds in litter, and root exudates.
2.2.1. Variant 1: NN
To test the case where neither microbial activity nor mineral sorption is temperature sensitive, we created a
model variant by assuming that no soil processes are temperature sensitive. This variant implicitly assumes
that microbes are capable of either upregulating the production of temperature‐optimal proteins or shifting
the activity and/or dormancy state within the community to organisms that are adapted to the current ther-
mal regime (Bradford et al., 2010; Lennon & Jones, 2011). Some empirical evidence suggests that decompo-
sition is insensitive to temperature over wide spatial gradients (Giardina & Ryan, 2000), although these
studies are the exceptions. This variant also simulates a condition where acclimation to temperature change
is perfect and instantaneous.
2.2.2. Variant 2: TN
To test the case where microbial activity is temperature‐sensitive but mineral sorption is not, we created a
model variant where the temperature sensitivity of microbial activity is defined using thermodynamic equa-
tions governing enzyme and microbial reactions. Overall microbial activity has a temperature optimum that
emerges from a trade‐off between temperature limitation on maximum reaction rates (often approximated
with the Arrhenius relationship) and the denaturation of enzymes at high temperatures (Conant et al.,
2011; Murphy et al., 1990; Ratkowsky et al., 2005; Schipper et al., 2014). Considering the positive and nega-
tive effects of warming on microbial activity leads to a temperature response curve with the highest rates of
activity centered on an optimum temperature. If this response curve does not shift or flatten (i.e., acclimate)
under warming, then at any particular time, microbes in a given biome would respond differently to warm-
ing based on their initial acclimated temperature.

The temperature‐dependent processes in the TN model variant are grouped into three categories: (i) equili-
brium reactions, (ii) nonequilibrium reactions, and (iii) enzyme‐mediated reactions. Some processes such as
depolymerization and uptake may have equilibrium, nonequilibrium, and enzyme‐mediated components
affecting different parameters (e.g., binding affinity, maximum rate, and fraction of active enzymes, respec-
tively). Equilibrium reactions include reversible binding (enzyme‐polymer, microbe‐monomer, enzyme‐
mineral, and monomer‐mineral) and microbial maintenance.

The temperature dependence of these reactions is based on Eyring's transition state theory (Eyring, 1935;
Tang & Riley, 2013),

KEQ Tð Þ ¼ K T0ð Þ exp −
ΔGEQ

R
1
T
−

1
T0

� �� �
(8)

where T0 is the reference temperature, set to the mean annual temperature, K(T0) is the reference affinity,
ΔGEQ is the Gibbs free energy change of the equilibrium reaction, R is the gas constant, and T is the current
temperature. Maximum reaction rates for depolymerization and monomer uptake are classified as nonequi-
librium or forward reactions. The temperature dependence of the forward reaction is

VNEQ Tð Þ ¼ V T0ð Þ T
T0

exp −
ΔGNEQ

R
1
T
−

1
T0

� �� �
(9)

where V(T0) is the reference maximum rate for the forward reaction and ΔGNEQ is the Gibbs free energy
change of the nonequilibrium reaction. Enzyme‐mediated processes considered in this model include depo-
lymerization of polymers by extracellular enzymes and uptake of monomers by transporter proteins.
Enzyme‐mediated processes are governed by a temperature‐dependent optimum, which affects the fraction
of enzymes that are active (i.e., conformationally able to bind to substrates), defined by

10.1029/2018GB006001Global Biogeochemical Cycles

ABRAMOFF ET AL. 765



f act ¼
1

1þ exp − nΔGE
RT

� 	 (10)

ΔGE ¼ ΔH*−TΔS*þ ΔCP T−T*
H

� 	
−T ln

T

T*
S

� �� �
(11)

ΔCP ¼ −46þ 30 1−1:54n−0:268
� 	

NCH (12)

where fact is the fraction of enzymes that are active at a given temperature and varies between 0 and 1
(Figure S3), ΔGE is the Gibbs free energy change of the enzyme reaction, ΔH* is the enthalpy change at
the convergence temperature for enthalpy (T*H), ΔS

* is the entropy change at the convergence temperature
for entropy (T*S), ΔCP is the change in heat capacity, n is the average number of amino acid residues in an
enzyme, and NCH is the average number of nonpolar hydrogen atoms per amino acid residue. FromMurphy
et al. (1990), Ratkowsky et al. (2005), and Schipper et al. (2014), we defined parameters for amino acid traits
(n, NCH, ΔH

*) that result in a thermal optimum at 290 K.

This model variant (TN) assumes that mineral sorption is not temperature sensitive. The temperature depen-
dence of mineral sorption is applied to the binding‐affinity parameters following equation (8). We set the

expression 1
T −

1
T0

� �
equal to 0, so that the binding‐affinity parameter is equal to the reference binding affinity

at any temperature.
2.2.3. Variant 3: TD
To test the case where microbial activity and mineral sorption are temperature sensitive, we created a model
variant with microbial temperature sensitivity as described in section 2.2.2. Conant et al. (2011) described
several hypotheses for how the temperature sensitivity of mineral sorption could depend on the thermody-
namics of the binding compounds. For example, if a forward reaction (e.g., adsorption) is exothermic,
increasing temperatures would shift the equilibrium toward the reactants or unbound (desorbed) state.
Conversely, an endothermic reaction would shift toward the bound (adsorbed) state with warming.
Organic matter associates with a wide variety of mineral surfaces and metal complexes (e.g., Fe and Al oxi-
des, phyllosilicates, metal ions) that all have different enthalpies of reaction. This model variant assumes
that adsorption will decrease with warming (i.e., is an exothermic reaction). Many adsorption reactions
can be exothermic, such as adsorption of organic matter to iron oxides and to expandable clays such as mon-
tmorillinite (Arnarson & Keil, 2000; Gu et al., 2008). We represent exothermic sorption reactions using equa-

tion (8) to modify the binding‐affinity parameter of sorption (kME and kMD in equations (6) and (7); Table 2).

We chose a value for ΔGEQ (20 kJ/mol−1) that is less temperature sensitive, and therefore conservative, rela-
tive to the empirically equivalent activation energy parameter of chemically resistant pool decomposition in
other models (e.g., 54 kJ/mol in Sulman et al., 2014) and measurements (e.g., 32 kJ/mol for phenol oxidase
activity in Davidson et al., 2012).

2.2.4. Variant 4: TI
To test an alternative theory of mineral sorption temperature sensitivity, we created a model variant that
assumes microbial activity is temperature sensitive as described in section 2.2.2 and that mineral sorption
is also temperature sensitive. The temperature sensitivity of mineral sorption in Variant 4 differs from
Variant 3 in that it assumes that increasing temperatures favor adsorption relative to desorption (i.e., is an
endothermic reaction). Endothermic adsorption reactions in soils include sorption of soils to lead
(Adhikari & Singh, 2003; Tan et al., 2008). In two calorimetry experiments with phosphorus on Al and Fe
minerals and kaolinite, Penn and colleagues found that reactions could be endothermic or exothermic
depending on the pH of the soil and the type of reaction that occurred (Penn, 2010; Penn & Warren,
2009). Indeed, the thermal properties of different adsorption reactions may vary widely depending on the
organic andmineral substrates and the soil environment. To represent endothermic adsorption, wemodified
equation (9) so that the Gibbs free energy change of the monomer‐mineral or enzyme‐mineral binding affi-
nity has the opposite sign compared to the TD variant. For the TD variant, equation (8) defines ΔGEQ as a
negative value, describing an exothermic forward reaction where higher temperatures shift the equilibrium
toward the unbound state, assuming that entropy change is negligible. In this model variant (TI), ΔGEQ is
given the equivalent positive value (i.e., endothermic forward reaction), such that higher temperatures shift
the equilibrium toward the bound state.
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KEQ Tð Þ ¼ K T0ð Þ exp ΔGEQ

R
1
T
−

1
T0

� �� �
(13)

2.3. Parameterization and Model Runs

We fit the model to the SOC stocks measured in D2015 by minimizing the sum of squared residuals between
modeled andmeasured SOC stocks. We used interior‐point optimization with upper and lower bounds set at
+50% and−50% of the default parameters reported in Tang et al. (2015; fmincon; MATLAB, 2018; MATLAB
Optimization Toolbox, 2018). We fit 27 parameters related to microbial, enzyme, substrate, and mineral
interactions (marked with an asterisk in Table S2). We did not fit certain parameters that we considered
to be constants, such as the gas constant, convergence temperature for entropy, and the number of amino
acids per average enzyme. Given the bounds on each parameter, the large number of parameters, and model
complexity, it is possible that other minima exist. However, the aim of this paper is to examine the tempera-
ture sensitivity of a model that fits site‐level data well, and not to identify the most realistic or general para-
meters for use in future studies.

We ran ReSOM at each of the 24 sites in D2015 assuming 10‐cm soil depth to match observations. We spun‐
up each site for 1,000 years using Qmax, MAT, and NPP as model forcing (Table S3). We imposed the MAT
with a constant temperature forcing. We verified that the system had reached steady state by confirming that
the first derivative of each carbon pool over the last 100 years of themodel run was statistically indistinguish-
able from zero using a one‐sample t test.

To test the effects of warming on model predictions, we projected SOC stock for 100 years with a sustained
+5 °C step change in temperature. For subsequent analyses of site‐level SOC under ambient conditions and
after warming, we used the mean SOC stock during the last year of the model run.

2.4. Statistical Analysis

Linear regression and generalized least squares regression relationships between model‐predicted SOC and
explanatory factors of interest (i.e., Qmax, MAT, and NPP) did not satisfy assumptions of normality.
Specifically, all linear regression models tested in this study showed significant curvature and heteroskedas-
ticity of residuals, both by visual inspection and by formal testing following Peña and Slate (2017). Similarly,
in the D2015 data set, we identified significant curvature in the relationship between SOC and MAT. As a
result, we used the Random Forest nonparametric machine‐learning algorithm to identify the predictor vari-
ables that had the greatest influence on predicted SOC stock at different timescales. Random Forest identi-
fies important predictor variables using an ensemble of regression trees grown by subsampling from the data
set (Liaw & Wiener, 2002). Trees produced using the bootstrapped subsample and the remaining “Out‐of‐
Bag” data are compared and aggregated across trees to estimate the mean square error and the percentage
of variance explained by themodel. Variable importance is reported as themean decrease in prediction accu-
racy when the variable is excluded from the model (Breiman, 2001). Importance values are comparable for
predictors within a model for the purpose of ranking. However, because these values are aggregated esti-
mates of prediction accuracy that do not relate to classical statistical measurements, the values themselves
cannot be compared across models.

We applied the Random Forest algorithm to all model variants' SOC stock predictions at steady state and to
changes in SOC stock after 100 years of +5 °C warming. To reanalyze the D2015 transect data in a consistent
manner, we also applied the Random Forest algorithm to all of the soil and environmental properties pro-
vided in that data set. All analyses were performed in the R Statistical Language (packages “lm,” “gvlma,”
and “randomForest”; Version 3.5.1; R Core Team, 2018).

3. Results
3.1. Predicted SOC at Steady State and Measured SOC Across a Spatial Gradient

We predicted steady state SOC stock with ReSOM at the 24 D2015 sites. To force the model, MAT was taken
directly from D2015 and NPP and mineral sorption capacity (Qmax) were estimated from D2015 measure-
ments of annual plant biomass increment and mineral‐associated SOC stock as described in section 2.1.
There was a strong correlation and little bias between modeled and observed SOC stock for all model var-
iants (slope = 1.18, R2 = 0.94, P < 0.001; Figures 1 and S4), and all model variants predicted the observed
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spatial data equally well (Figure 1)—across sites spanning a 7.2 kg C/m−2

range in observed SOC stocks, a 20 °C range in mean annual temperature,
and 11 soil orders. The difference among model‐variant temperature‐
response functions did not affect within site predictions at steady state.
The microbial temperature response curve assumed microbes were initi-
ally acclimated to their site MAT, such that their reference temperature
(T0; Table S2) is set equal to the site MAT. The reaction rates were the
same at steady state for all model variants at a given site, because reaction
rates are calculated based on deviation from the reference temperature

(e.g., terms T
T0

and 1
T−

1
T0

� �
in equation (9)). Because all model variants

made identical steady state predictions, we represent them in Figure 2
using only one symbol (light blue symbols).

Steady state SOC stock predictions (Figure 2, blue symbols) were highly
correlated with mineral sorption capacity Qmax. There was also a signifi-
cant correlation betweenmeasured SOC stock andQmax in the D2015 data
set (Figure 2, open symbols). In our Random Forest analysis of all soil and
environmental properties in the D2015 data set, Qmax was the highest
ranked soil property, followed by CEC, bulk density, NPP, total reserve

base cations, MAT, and other geochemical and texture variables (Figure S5). Notably, clay fraction (fClay)
was the least important predictor of observed SOC stock, despite being commonly used as a proxy for
mineral sorption capacity in global‐scale soil decomposition models (Sulman et al., 2014; Wieder et al.,
2013). At some sites, clay fraction has been well correlated with the sorption capacity of dissolved organic
carbon (Mayes et al., 2012), but across a global range of soil orders, clay fraction is a poor predictor of
mineral‐associated carbon (Jagadamma et al., 2014). Some of the predictors of total SOC in Figure S5, such
as CEC and bulk density, and to a lesser extent Qmax, are confounded with SOC because organic matter
affects these soil properties. However, data on CEC and bulk density are widely available (Hengl et al.,
2014; Nachtergaele et al., 2012) and could be used with geochemical variables to create proxies for sorption
capacity, especially if sorption is considered to represent not only the monolayer organomineral interaction
that is assumed in ECA (Tang & Riley, 2013) but also multilayer sorption and complexation.

3.2. Predicted Changes in SOC After Warming

The four model variants diverged in their predictions of SOC response to a +5 °C step change in temperature
(Figure 3). When SOC stock was projected for 100 years under a 5 °C warming scenario, the NN model (no
temperature sensitivities) predicted no change in SOC stock at all sites, as expected, regardless of Qmax,
initial MAT, and NPP (Figure 3a, dark blue). In contrast, the TN model (microbial activity is temperature

sensitive but mineral sorption is not, light blue) predicted an average loss
in SOC stock of 0.2 kg C/m2 after 100 years of warming across the sites,
with a maximum loss of 0.6 kg C/m2. This change represents a 5% to 6%
decrease from the total initial SOC. The TD model (microbial activity is
temperature sensitive and adsorption decreases with warming) predicted
an average loss of 0.8 kg C/m2 across sites, with a maximum loss of 1.8 kg
C/m2 and a strong relationship with initial SOC (slope =−0.02, R2 = 0.62;
Figure S6. The TI model (microbial activity is temperature sensitive and
adsorption increases with warming) predicted no loss in SOC and up to
a 0.9 kg C/m2 increase in SOC, depending on the site. These absolute
changes represented an average SOC stock change of −18% and +9% for
the TD and TI models, respectively.

The range of predicted change in (Δ) SOC stock in the lowest and highest
quintiles of site MAT were 2.8 and 1.0 kg C/m2, respectively, reflecting
assumptions about the change in enzyme activity relative to the initial site
MAT. The range of predicted ΔSOC in the lowest and highest quintiles of
siteQmax were more similar, 2.9 and 2.2 kg C/m2, respectively. This means

Figure 1. Modeled versusmeasured soil organic carbon (SOC) at each of the
24 sites in the D2015 data set. All model variants make identical SOC
stock predictions at steady state. The black solid line is the regression fit, and
the gray dotted line is the 1:1 line. Error bars are standard error of
measured SOC.

Figure 2. Relationship between estimated Qmax at each site and the soil
organic carbon (SOC) stock measured by D2015 (open symbols) and pre-
dicted by all model variants (light blue symbols).
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that the effect of warming differed by initial site MAT, with warmer sites losing less SOC than colder sites.

3.3. Controls on SOC Across Timescales

Using the Random Forest algorithm (Table S4), we ranked the importance of Qmax, MAT, and NPP on the
data set derived fromD2015 observations and onmodeled SOC stock at the D2015 sites. Variable importance
was calculated as the mean decrease in statistical prediction accuracy when the variable was excluded from
the model (Breiman, 2001). Mineral sorption capacity (Qmax) was more important than MAT and NPP in
explaining modeled steady state SOC stock and measured SOC stock (Figure 4). The agreement among
model variants in the ranking of predictor variable importance suggests that Qmax is the most important fac-
tor determining site‐level SOC at steady state regardless of microbial or mineral temperature sensitivity.

According to the Random Forest results, the relative importance of the environmental variables explaining
SOC stock were different in the steady state case (Figure 4) compared to the decadal‐scale warming case
(Figure 5). Modeled steady state SOC stock was controlled by Qmax but controls on the SOC warming
response varied by timescale. In particular, MAT was the most important predictor of SOC stock change
after 1, 5, and 10 years of +5 °C warming, but after 100 years NPP was the most important predictor. This
result challenges the assumption that decadal‐scale responses to warming are similar to steady state

Figure 3. Time series of the change in soil organic carbon (SOC) stock following a +5 °C step change imposed at year 0 for
sites with a mean annual temperature (MAT) in the lowest quintile (a), Qmax in the lowest quintile (b), MAT in the
highest quintile (c), andQmax in the highest quintile. Color indicates themodel variant (NN, TN, TD, and TI) used for each
run. Each colored line represents the predicted change SOC stock at an individual site.

Figure 4. Random Forest variable importance values (y axis) for predicting SOC stock at steady state across D2015 sites
using the ReSOM model (a; light blue bars) and SOC stock measured at the D2015 sites (b; gray bars). SOC = soil
organic carbon; ReSOM = reaction‐network‐based model of Soil Organic Matter and microbes; MAT = mean annual
temperature; NPP = net primary production.
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differences across a temperature gradient of a similar magnitude in temperature change (i.e., the space‐for‐
time assumption), at least as interpreted by the TN, TD, and TI models. For the NN model, none of the pre-
dictor variables were explanatory because there were no SOC changes in response to temperature (Table S4).
The TN, TD, and TI models predicted similar importance of variables across timescales, suggesting no inter-
action effect between the temperature sensitivity of mineral sorption and the relative importance of Qmax,
MAT, and NPP.

4. Discussion

We found that measurements from sites in quasi steady state across a spatial gradient in temperature could
not help distinguish how model variants with different temperature sensitivities would respond to changes
in temperature over time. More generally, differences in model behavior could not be constrained by steady
state observations. Thus, a key implication of our simulations is that spatial gradients may be insufficient to
infer (or have confidence in model predictions of) future SOC changes under transient warming. While spa-
tial gradients generate useful insights into the influence of various factors on SOC (Clemmensen et al., 2015;
Doetterl et al., 2018; Koven et al., 2017; Raymer et al., 2013), the fast timescales of anthropogenic climate
change will likely create transient responses that cannot be inferred from variation among sites at or near
steady state. Using different process representations of microbial and mineral temperature sensitivity, we
showed that models with identical steady state predictions across spatial gradients make different dynamic
predictions under future warming scenarios. We also demonstrated that large, warming‐induced losses of
mineral‐associated C are possible with or without direct temperature effects onmineral‐associated C, as long
as microbial activity is temperature sensitive. The converse was also shown: if mineral sorption is tempera-
ture sensitive, then overall SOC stocks will be temperature sensitive as well even if microbial parameters are
not temperature sensitive, because soprtion coefficients control the transfer of carbon from a mineral‐
associated state to a more microbially accessible dissolved state (Figure S7 and Text S2).

The ReSOM model agreed well with the observations from the large D2015 transect of SOC stocks and the

factors controlling them. For both the models and observations, Qmax was strongly correlated with steady
state SOC stocks (Figure 2), suggesting that minerals control the long‐term spatial distribution of SOC

stocks. Similarly, the Random Forest analysis showed that Qmax was more important than MAT and NPP

Figure 5. Random Forest variable importance values for predicting the change in soil organic carbon (SOC) stock for 100
years of 5 °C warming using the NN model (dark blue bars), the TN model (light blue bars), the TD model (orange bars),
and the TI model (green bars). The three variables considered are Qmax, mean annual temperature (MAT), and net
primary production (NPP). Model variable importance values are shown for predicted change in SOC after (a) 1 year of the
+5 °C step change; (b) 5 years; (c) 10 years; and (d) 100 years. Model variable importance for the NNmodel variant cannot
be seen because this model variant predicted no change in SOC stock.
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in explaining steady state SOC stocks (Figure 4). Although mineral‐SOC tends to be old and relatively stable
(Trumbore, 2009), mineral control of SOC stocks did not prevent large temperature responses under

warming. We predicted −1.8 to +0.9 kg C/m2 changes in SOC stocks across the model variants
(Figure S8). These absolute changes represented a −19% loss to a +11% gain in SOC stocks, with a mean
[1st, 3rd quartiles] of −4% [−9%, +1.6%]. The largest losses were predicted when adsorption decreases
with warming (TD), which increases the availability of C accessible to microbes (Figures 3 and S7).
Conversely, SOC stocks increased even without changes to NPP in the TI model variant where adsorption
increases with warming, decreasing microbially available C. Further, fairly large losses were observed in
the TN model where mineral sorption is not temperature sensitive but microbial activity is. Warming
increased microbial consumption of monomer and enzyme C, creating increased competition for the
remaining C, and ultimately less C sorbed to minerals. Therefore, mineral‐associated C that exchanges
dynamically with aqueous C is temperature sensitive as long as microbial activity is temperature sensitive.
This dependency should be the case for all models that have an explicit sorption model that depends on
the concentration of total C, but to our knowledge, it has never been demonstrated with a soil C model
before. Thus, a key implication of reversible mineral sorption is that mineral‐associated C is vulnerable to
warming, regardless of the explicit temperature sensitivity of sorption.

The range in site‐level SOC stock changes due to warming was not affected by mineral sorption capacity
(Qmax; Figures 3b and 3d) but was affected by initial site MAT (Figures 3a and 3c). At low initial site
MAT, there was a larger range of SOC stock change predictions than at high initial site MAT. At warm sites,
microbial enzyme activity was closer to the predicted maximum activity based on the heat capacity of
enzymes (Figure S3). As a result, the model variants predicted smaller SOC stock losses with warming
because the increased encounter rate between molecules when warmed (Davidson et al., 2012; Rodrigo
et al., 1997) was compensated by the decreased ability of proteins (such as enzymes) to bind substrates at
high temperatures (Alster et al., 2016; Ratkowsky et al., 2005; Schipper et al., 2014).

The relative importance of the different variables governing soil response to warming are not consistent over
time. For some of the model variants, there was a relationship between initial SOC stock and SOC stock
change after warming, similar to that observed in Crowther et al. (2016). For example, the TN and TD mod-
els have a significant negative relationship between initial SOC and change in SOC stock with warming,
implying that sites with large SOC stocks before warming will lose more SOC than sites with small SOC
stocks (Figure S6). However, this relationship is not observed in van Gestel et al. (2018), suggesting that con-
trols on SOC stocks with warming cannot be described with the single factor relationships (to initial SOC,
MAT, MAP, percent clay, pH) tested in those two studies. The relative influence of controls like mineral
sorption, MAT, and NPP may change over time in response to a perturbation, resulting in a phased SOC
stock response such as that observed in a 26‐year soil warming experiment (Melillo et al., 2017). At seasonal
timescales and in response to perturbations, there are also many examples of transient responses whose

Figure 6. Diagram of the predicted soil organic carbon (SOC) stock loss or gain depending on temperature sensitivity
assumptions of microbial activity (y axis) and mineral sorption (x axis). The color shading represents potential changes
in SOC stock as a result of a given combination of assumptions, ranging from SOC stock loss (red) to no change (white) to
SOC stock gain (blue). The shading of the inset boxes indicates the change in SOC for each of the fourmodels: NN, TN, TD,
and TI. The position of each inset box corresponds to the assumptions used to create the model.
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controlling factors are not linearly related to climate or site characteristics (Oikawa et al., 2014; Placella et al.,
2012). For example, soil respiration responses to pulses of water cannot be explained by instantaneous soil
moisture alone and are thought to involve interaction effects between microbial drought responses, buildup
of substrates in drying soils, and changes to soil structure (Arnold et al., 2015; Blankinship & Schimel, 2018;
Evans & Wallenstein, 2012; Waring & Powers, 2016).

There is a wide range of possible soil responses to warming, and the predicted responses were different
between model variants (Figure 3). There was little sensitivity of SOC stock to warming in the variants with-
out microbial or mineral sensitivity (NN) or with opposing sensitivities in which temperature‐sensitive
microbial activity is offset by increasing mineral adsorption (TI; Figure S6). Because different combinations
of process‐level assumptions canmake similar predictions of SOC stocks (Figure 6), it is not possible to deter-
mine the most accurate model variant from measured changes in total SOC such as those reported in
Crowther et al. (2016) and van Gestel et al. (2018). However, the factors affecting model predictions differ
across the model variants (Figure 5), and the model predicts multiple measurable pools and fluxes, including
soil fractions, heterotrophic respiration, and enzyme activity. Therefore, given additional measurements
from long‐term warming experiments, especially mineral fractions, it may be possible to invalidate some
of the temperature assumptions simulated here.

This study is the first application of the ReSOMmodel to a large, spatially extensive data set. Like other stan-
dalone soil decomposition models, ReSOM lacks plant feedbacks and other processes relevant to global
change predictions. However, this model is suitable for our analyses investigating the impact of microbial
and mineral temperature responses under steady state and transient warming conditions. The evidence pre-
sented here is consistent with the emerging perspective that interactions between microbes and their envir-
onment (e.g., temperature and mineral surfaces) affect SOC stocks (Sulman et al., 2018; Wieder et al., 2015).
These results imply the need to improve soil biogeochemical modules in ESM land models and the observa-
tions used to constrain these models, because many reasonable assumptions can lead to a broad set of SOC
stock change predictions. For example, ReSOM could be better constrained with targeted measurements of
sorption and enzyme kinetic parameters in response to temperature perturbations, plant inputs, and other
effects on microbial access to inputs (e.g., soil moisture, pH, and microbial allocation). Experiments that
measure microbial responses to temperature over different timescales and consider the enzymatic capabil-
ities of different microbial communities will help determine the shape and flexibility of microbial tempera-
ture responses across space and time. Predictions made by ESM‐scale land models may benefit from using
microbe‐ and chemical‐explicit processes such as sorption and enzyme catalysis to estimate SOC accumula-
tion and decomposition. Most importantly, long‐term warming experiments used to validate soil C models,
such as those reported in Crowther et al. (2016) and van Gestel et al. (2018), would benefit from ancillary
measurements of as many factors (e.g., Qmax, MAT, NPP, MAP, pH, and other soil C pools) as possible to
enable modelers to distinguish between models that make the same SOC stock predictions for
different reasons.

We found that models developed to reproduce observed SOC spatial gradients may be inadequate for pre-
dicting transient temperature responses, in part because the effects on SOC stocks of some chemical and bio-
logical processes are indistinguishable at steady state. Different combinations of reasonable assumptions
about microbial and mineral temperature sensitivity resulted in a wide range of SOC stock changes.
Although many soil C models have considered and incorporated explicit assumptions about microbial tem-
perature sensitivity (Abramoff et al., 2017, 2018; Allison et al., 2010; Finzi et al., 2015; German et al., 2012; He
et al., 2015; Lawrence et al., 2009; Sistla et al., 2014; Sulman et al., 2014; Wang et al., 2013; Wieder et al.,
2013), there are fewer models that consider the temperature sensitivity of mineral sorption (Dwivedi
et al., 2017; Huang et al., 2018; Riley et al., 2014; Tang & Riley, 2015). The wide range of SOC stock changes
predicted by varying only mineral sorption assumptions implies that the temperature sensitivity of sorption
may be just as important as that of microbial activity in determining total C stock changes with warming.

References
Abramoff, R., Xu, X., Hartman, M., O'Brien, S., Feng, W., Davidson, E., et al. (2018). The Millennial model: In search of measurable pools

and transformations for modeling soil carbon in the new century. Biogeochemistry, 137(1–2), 51–71. https://doi.org/10.1007/s10533‐017‐
0409‐7

10.1029/2018GB006001Global Biogeochemical Cycles

ABRAMOFF ET AL. 772

Acknowledgments
The authors thank Alison Marklein,
Caitlin Hicks Pries, and Rachel Porras
for helpful comments and discussion.
The ReSOM model is publicly available
in the repository: https://github.com/
jinyun1tang/one_bug_model. This
work was supported as part of the
Terrestrial Ecosystem Science and
Regional Global Climate Modeling
Programs by the Director, Office of
Science, Office of Biological and
Environmental Research, of the U.S.
Department of Energy under contract
DE‐AC02‐05CH11231.

https://doi.org/10.1007/s10533-017-0409-7
https://doi.org/10.1007/s10533-017-0409-7
https://github.com/jinyun1tang/one_bug_model
https://github.com/jinyun1tang/one_bug_model


Abramoff, R. Z., Davidson, E. A., & Finzi, A. C. (2017). A parsimonious modular approach to building a mechanistic belowground carbon
and nitrogen model. Journal of Geophysical Research: Biogeosciences, 122, 2418–2434. https://doi.org/10.1002/2017JG003796

Adhikari, T., & Singh, M. V. (2003). Sorption characteristics of lead and cadmium in some soils of India. Geoderma, 114, 81–92. https://doi.
org/10.1016/S0016‐7061(02)00352‐X

Ahrens, B., Braakhekke, M. C., Guggenberger, G., Schrumpf, M., & Reichstein, M. (2015). Contribution of sorption, DOC transport and
microbial interactions to the 14C age of a soil organic carbon profile: Insights from a calibrated process model. Soil Biol. Biochem., 88,
390–402. https://doi.org/10.1016/j.soilbio.2015.06.008

Allison, S. D., Wallenstein, M. D., & Bradford, M. a. (2010). Soil‐carbon response to warming dependent on microbial physiology. Nat.
Geosci., 3(5), 336–340. https://doi.org/10.1038/ngeo846

Alster, C. J., Koyama, A., Johnson, N. G., Wallenstein, M. D., & von Fischer, J. C. (2016). Temperature sensitivity of soil microbial com-
munities: An application of macromolecular rate theory to microbial respiration. J. Geophys. Res. Biogeosciences, 121, 1420–1433. https://
doi.org/10.1002/2016JG003343

Anderson‐Teixeira, K. J., Delong, J. P., Fox, A. M., Brese, D. A., & Litvak, M. E. (2011). Differential responses of production and respiration
to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Glob. Chang. Biol., 17(1), 410–424.
https://doi.org/10.1111/j.1365‐2486.2010.02269.x

Arnarson, T. S., & Keil, R. G. (2000). Mechanisms of pore water organic matter adsorption to montmorillonite.Marine Chemistry, 71(3–4),
309–320.

Arnold, C., Ghezzehei, T. A., & Asefaw, A. (2015). Decomposition of distinct organic matter pools is regulated by moisture status in
structured wetland soils. Soil Biol. Biochem., 81, 28–37. https://doi.org/10.1016/j.soilbio.2014.10.029

Bárcenas‐Moreno, G., Brandón, M. G., Rousk, J., & Bååth, E. (2009). Adaptation of soil microbial communities to temperature:
Comparison of fungi and bacteria in a laboratory experiment. Glob. Chang. Biol., 15(12), 2950–2957. https://doi.org/10.1111/j.1365‐
2486.2009.01882.x

Belay‐Tedla, A., Zhou, X., Su, B., Wan, S., & Luo, Y. (2009). Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass
prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil Biol. Biochem., 41(1), 110–116. https://doi.org/
10.1016/j.soilbio.2008.10.003

Blankinship, J., & Schimel, J. (2018). Biotic versus abiotic controls on bioavailable soil organic carbon. Soil Syst., 2(1), 10. https://doi.org/
10.3390/soilsystems2010010

Bradford, M. A., Watts, B. W., & Davies, C. A. (2010). Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob.
Chang. Biol., 16(5), 1576–1588. https://doi.org/10.1111/j.1365‐2486.2009.02040.x

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324
Bugmann, H. K. M. (2010). A simplified forest model to study species composition along climate gradients published by Ecological Society

of America. A simplified forest model to study species composition along climate gradients1. Ecology, 77(7), 2055–2074.
Carvalhais, N., Reichstein, M., Collatz, G. J., Montagnani, L., Papale, D., & Rambal, S. (2008). Implications of the carbon cycle steady state

assumption for biogeochemical modeling performance and inverse parameter retrieval. Global Biogeochem. Cycles, 22, GB2007. https://
doi.org/10.1029/2007GB003033

Chenu, C., & Plante, A. F. (2006). Clay‐sized organo‐mineral complexes in a cultivation chronosequence: Revisiting the concept of the
“primary organo‐mineral complex”. Eur. J. Soil Sci., 57(4), 596–607. https://doi.org/10.1111/j.1365‐2389.2006.00834.x

Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., et al. (2014). Carbon and other biogeochemical cycles. In Climate change
2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change (pp. 465–570). Cambridge: Cambridge University Press.

Clemmensen, K. E., Finlay, R. D., Dahlberg, A., Stenlid, J., Wardle, D. A., & Lindahl, B. D. (2015). Carbon sequestration is related to
mycorrhizal fungal community shifts during long‐term succession in boreal forests. New Phytol., 205(4), 1525–1536. https://doi.org/
10.1111/nph.13208

Coleman, K., & Jenkinson, D. S. (1996). RothC‐26.3 ‐ A model for the turnover of carbon in soil. In D. S. Powlson, P. Smith, & J. U. Smith
(Eds.), Evaluation of Soil Organic Matter Models Using Existing Long‐Term Datasets (pp. 237–246). Heidelberg: Springer‐Verlag.

Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel‐Aleks, G., Koven, C. D., Riley, W. J., et al. (2018). The International Land Model
Benchmarking (ILAMB) system: Design, theory, and implementation. J. Adv. Model. Earth Syst., 10, 2731–2754. https://doi.org/10.1029/
2018MS001354

Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., et al. (2011). Temperature and soil organic matter
decomposition rates—Synthesis of current knowledge and a way forward.Glob. Chang. Biol., 17(11), 3392–3404. https://doi.org/10.1111/
j.1365‐2486.2011.02496.x

Crowther, T., Todd‐Brown, K. E. O., Rowe, C. W., Wieder, W. R., Carey, J. C., Machmuller, M. B., et al. (2016). Quantifying global soil C
losses in response to warming. Nature, 540(7631), 104–108. https://doi.org/10.1038/nature20150

Davidson, E. A., Samanta, S., Caramori, S. S., & Savage, K. (2012). The Dual Arrhenius and Michaelis–Menten kinetics model for
decomposition of soil organic matter at hourly to seasonal time scales. Glob. Chang. Biol., 18(1), 371–384. https://doi.org/10.1111/j.1365‐
2486.2011.02546.x

Doetterl, S., Berhe, A. A., Arnold, C., Bodé, S., Fiener, P., Finke, P., et al. (2018). Links among warming, carbon and microbial dynamics
mediated by soil mineral weathering. Nat. Geosci., 11(8), 589–593. https://doi.org/10.1038/s41561‐018‐0168‐7

Doetterl, S., Stevens, A., Six, J., Merckx, R., van Oost, K., Casanova Pinto, M., et al. (2015). Soil carbon storage controlled by interactions
between geochemistry and climate. Nat. Geosci., 8(10), 780–783. https://doi.org/10.1038/NGEO2516

Dunne, J., Saleska, S., Fisher, M., & Harte, J. (2004). Integrating experimental and gradient methods in ecological climate change research.
Ecology, 85(11), 2917–2926. https://doi.org/10.1890/03‐8021

Dwivedi, D., Riley, W., Torn, M., Spycher, N., Maggi, F., & Tang, J. (2017). Mineral properties, microbes, transport, and plant‐input profiles
control vertical distribution and age of soil carbon stocks. Soil Biol. Biochem., 107, 244–259. https://doi.org/10.1016/j.soilbio.2016.12.019

Evans, S. E., & Wallenstein, M. D. (2012). Soil microbial community response to drying and rewetting stress: Does historical precipitation
regime matter? Biogeochemistry, 109(1–3), 101–116. https://doi.org/10.1007/s10533‐011‐9638‐3

Eyring, H. (1935). The Activated Complex in Chemical Reactions. J. Chem. Phys., (107), 3.
Finzi, A. C., Abramoff, R. Z., Spiller, K. S., Brzostek, E. R., Darby, B. A., Kramer, M. A., & Phillips, R. P. (2015). Rhizosphere processes are

quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology, 21(5), 2082–2094. https://doi.org/
10.1111/gcb.12816

Frey, S. D., Drijber, R., Smith, H., &Melillo, J. (2008). Microbial biomass, functional capacity, and community structure after 12 years of soil
warming. Soil Biol. Biochem., 40(11), 2904–2907. https://doi.org/10.1016/j.soilbio.2008.07.020

10.1029/2018GB006001Global Biogeochemical Cycles

ABRAMOFF ET AL. 773

https://doi.org/10.1002/2017JG003796
https://doi.org/10.1016/S0016-7061(02)00352-X
https://doi.org/10.1016/S0016-7061(02)00352-X
https://doi.org/10.1016/j.soilbio.2015.06.008
https://doi.org/10.1038/ngeo846
https://doi.org/10.1002/2016JG003343
https://doi.org/10.1002/2016JG003343
https://doi.org/10.1111/j.1365-2486.2010.02269.x
https://doi.org/10.1016/j.soilbio.2014.10.029
https://doi.org/10.1111/j.1365-2486.2009.01882.x
https://doi.org/10.1111/j.1365-2486.2009.01882.x
https://doi.org/10.1016/j.soilbio.2008.10.003
https://doi.org/10.1016/j.soilbio.2008.10.003
https://doi.org/10.3390/soilsystems2010010
https://doi.org/10.3390/soilsystems2010010
https://doi.org/10.1111/j.1365-2486.2009.02040.x
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1029/2007GB003033
https://doi.org/10.1029/2007GB003033
https://doi.org/10.1111/j.1365-2389.2006.00834.x
https://doi.org/10.1111/nph.13208
https://doi.org/10.1111/nph.13208
https://doi.org/10.1029/2018MS001354
https://doi.org/10.1029/2018MS001354
https://doi.org/10.1111/j.1365-2486.2011.02496.x
https://doi.org/10.1111/j.1365-2486.2011.02496.x
https://doi.org/10.1038/nature20150
https://doi.org/10.1111/j.1365-2486.2011.02546.x
https://doi.org/10.1111/j.1365-2486.2011.02546.x
https://doi.org/10.1038/s41561-018-0168-7
https://doi.org/10.1038/NGEO2516
https://doi.org/10.1890/03-8021
https://doi.org/10.1016/j.soilbio.2016.12.019
https://doi.org/10.1007/s10533-011-9638-3
https://doi.org/10.1111/gcb.12816
https://doi.org/10.1111/gcb.12816
https://doi.org/10.1016/j.soilbio.2008.07.020


Friedlingstein, P., Meinshausen, M., Arora, V. K., Jones, C. D., Anav, A., Liddicoat, S. K., & Knutti, R. (2014). Uncertainties in CMIP5
climate projections due to carbon cycle feedbacks. J. Clim., 27(2), 511–526. https://doi.org/10.1175/JCLI‐D‐12‐00579.1

German, D. P., Marcelo, K. R. B., Stone, M. M., & Allison, S. D. (2012). The Michaelis‐Menten kinetics of soil extracellular enzymes in
response to temperature: A cross‐latitudinal study. Glob. Chang. Biol., 18(4), 1468–1479. https://doi.org/10.1111/j.1365‐2486.2011.
02615.x

Giardina, C. P., Litton, C. M., Crow, S. E., & Asner, G. P. (2014). Warming‐related increases in soil CO2 efflux are explained by increased
below‐ground carbon flux. Nat. Clim. Chang., 4(9), 822–827. https://doi.org/10.1038/nclimate2322

Giardina, C. P., & Ryan, M. G. (2000). Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature.
Nature, 404(April), 16–19.

Grant, R. F., Juma, N. G., & McGill, W. B. (1993). Simulation of carbon and nitrogen transformations in soil: Microbial biomass and
metabolic products. Soil Biol. Biochem., 25(10), 1331–1338. https://doi.org/10.1016/0038‐0717(93)90047‐F

Gu, B., Chen, Z., Mccarthyt, J. F., Divlslon, E. S., Division, C., & Ridge, O. (2008). Adsorption and desorption of natural organic matter on
iron oxide: Mechanisms and models. Environ Sci Technol, 28(1), 38–46.

Hagerty, S. B., van Groenigen, K. J., Allison, S. D., Hungate, B. A., Schwartz, E., Koch, G. W., et al. (2014). Accelerated microbial
turnover but constant growth efficiency with warming in soil. Nat. Clim. Chang., 4(10), 903–906. https://doi.org/10.1038/
nclimate2361

Hararuk, O., Smith, M. J., & Luo, Y. (2015). Microbial models with data‐driven parameters predict stronger soil carbon responses to climate
change. Glob. Chang. Biol., 21(6), 2439–2453. https://doi.org/10.1111/gcb.12827

Harmon, M. (2013). LTER Intersite Fine Litter Decomposition Experiment (LIDET), 1990 to 2002., Long‐Term Ecol. Res. For. Sci. Data
Bank, Corvallis, OR. [Database].

Harte, J., Saleska, S. R., & Levy, C. (2015). Convergent ecosystem responses to 23‐year ambient and manipulated warming link advancing
snowmelt and shrub encroachment to transient and long‐term climate‐soil carbon feedback. Glob. Chang. Biol., 21(6), 2349–2356.
https://doi.org/10.1111/gcb.12831

He, Y., Yang, J., Zhuang, Q., Harden, J. W., McGuire, A. D., Liu, Y., et al. (2015). Incorporating microbial dormancy dynamics into soil
decomposition models to improve quantification of soil carbon dynamics of northern temperate forests. J. Geophys. Res. Biogeosciences,
120, 2596–2611. https://doi.org/10.1002/2015JG003130

Hengl, T., de Jesus, J. M., MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M., Ribeiro, E., et al. (2014). SoilGrids1km—Global soil
information based on automated mapping. PLoS One, 9(8), e105992. https://doi.org/10.1371/journal.pone.0105992

Huang, Y., Guenet, B., Ciais, P., Janssens, I. A., Soong, J. L., Wang, Y., et al. (2018). ORCHIMIC (v1. 0), A microbe‐driven model for soil
organic matter decomposition designed for large‐scale applications. Geosci. Model Dev., 11(6), 2111–2138. https://doi.org/10.5194/gmd‐
11‐2111‐2018

Jagadamma, S., Mayes, M. a., & Phillips, J. R. (2012). Selective sorption of dissolved organic carbon compounds by temperate soils. PLoS
One, 7(11), e50434. https://doi.org/10.1371/journal.pone.0050434

Jagadamma, S., Mayes, M. A., Zinn, Y. L., Gísladóttir, G., & Russell, A. E. (2014). Sorption of organic carbon compounds to the fine fraction
of surface and subsurface soils. Geoderma, 213, 79–86. https://doi.org/10.1016/j.geoderma.2013.07.030

Jenny, H., & Amundson, R. (1941). Factors of soil formation: A system of quantitative pedology. New York: McGraw‐Hill Book Co. https://
doi.org/10.1097/00010694‐194111000‐00009

Kalbitz, K., Solinger, S., Park, J.‐H., Michalzik, B., & Matzner, E. (2000). Controls on the dynamics of dissolved organic matter in soils: A
review. Soil Sci., 165(4), 277–304. https://doi.org/10.1097/00010694‐200004000‐00001

Kleber, M., Nico, P. S., Plante, A., Filley, T., Kramer, M., Swanston, C., & Sollins, P. (2011). Old and stable soil organic matter is not
necessarily chemically recalcitrant: Implications for modeling concepts and temperature sensitivity. Glob. Chang. Biol., 17(2), 1097–1107
. https://doi.org/10.1111/j.1365‐2486.2010.02278.x

Knutti, R., & Sedlácek, J. (2012). Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang., 3(4),
369–373. https://doi.org/10.1038/nclimate1716

Koven, C. D., Hugelius, G., Lawrence, D. M., & Wieder, W. R. (2017). Higher climatological temperature sensitivity of soil carbon in cold
than warm climates. Nature Climate Change, 7, 817–822. https://doi.org/10.1038/NCLIMATE3421

Lawrence, C. R., Neff, J. C., & Schimel, J. P. (2009). Does adding microbial mechanisms of decomposition improve soil organic matter
models? A comparison of four models using data from a pulsed rewetting experiment. Soil Biol. Biochem., 41(9), 1923–1934. https://doi.
org/10.1016/j.soilbio.2009.06.016

Lennon, J. T., & Jones, S. E. (2011). Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat Rev Microbiol,
9(2), 119–130. https://doi.org/10.1038/nrmicro2504

Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18–22.
Mathieu, J. a., Hatté, C., Balesdent, J., & Parent, É. (2015). Deep soil carbon dynamics are driven more by soil type than by climate: A

worldwide meta‐analysis of radiocarbon profiles. Glob. Chang. Biol.. https://doi.org/10.1111/gcb.13012
MATLAB (2018). The MathWorks, Inc., Natick, Massachusetts, United States.
MATLAB Optimization Toolbox (2018). The MathWorks, Inc., Natick, Massachusetts, United States.
Mayes, M. A., Heal, K. R., Brandt, C. C., Phillips, J. R., & Jardine, P. M. (2012). Relation between soil order and sorption of dissolved organic

carbon in temperate soils. Soil Sci. Soc. Am. J., 76(1), 61–69. https://doi.org/10.2136/sssaj
Melillo, J. M., Butler, S., Johnson, J., Mohan, J., Steudler, P., Lux, H., et al. (2011). Soil warming, carbon‐nitrogen interactions, and forest

carbon budgets. Proc. Natl. Acad. Sci. U. S. A., 108(23), 9508–9512. https://doi.org/10.1073/pnas.1018189108
Melillo, J. M., Frey, S. D., Deangelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., et al. (2017). Long‐term pattern and magnitude of

soil carbon feedback to the climate system in a warming world. Science, 1–5.
Michaelis, L., & Menten, M. L. (1913). The kinetics of the inversion effect. Biochem. Z, 49, 333–369.
Mikutta, R., Zang, U., Chorover, J., Haumaier, L., & Kalbitz, K. (2011). Stabilization of extracellular polymeric substances (Bacillus subtilis)

by adsorption to and coprecipitation with Al forms. Geochim. Cosmochim. Acta, 75(11), 3135–3154. https://doi.org/10.1016/j.
gca.2011.03.006

Murphy, K. P., Privalov, P. L., & Gill, S. J. (1990). Common features of protein unfolding and dissolution of hydrophobic compounds.
Science, 247(4942), 559–561. https://doi.org/10.1126/science.2300815

Nachtergaele, F., van Velthuizen, H., van Engelen, V., Fischer, G., Jones, A., Montanarella, L., et al. (2012).Harmonized world soil database
(version 1.2) (pp. 1–50). Rome, Italy IIASA, Laxenburg, Austria: FAO.

Nguyen, M. L., Goldfarb, J. L., Plante, A. F., Lau, B. L. T., & Hockaday, W. C. (2019). Sorption temperature and the stability of iron‐bound
soil organic matter. Geoderma, 341, 93–99. https://doi.org/10.1016/j.geoderma.2019.01.040.

10.1029/2018GB006001Global Biogeochemical Cycles

ABRAMOFF ET AL. 774

https://doi.org/10.1175/JCLI-D-12-00579.1
https://doi.org/10.1111/j.1365-2486.2011.02615.x
https://doi.org/10.1111/j.1365-2486.2011.02615.x
https://doi.org/10.1038/nclimate2322
https://doi.org/10.1016/0038-0717(93)90047-F
https://doi.org/10.1038/nclimate2361
https://doi.org/10.1038/nclimate2361
https://doi.org/10.1111/gcb.12827
https://doi.org/10.1111/gcb.12831
https://doi.org/10.1002/2015JG003130
https://doi.org/10.1371/journal.pone.0105992
https://doi.org/10.5194/gmd-11-2111-2018
https://doi.org/10.5194/gmd-11-2111-2018
https://doi.org/10.1371/journal.pone.0050434
https://doi.org/10.1016/j.geoderma.2013.07.030
https://doi.org/10.1097/00010694-194111000-00009
https://doi.org/10.1097/00010694-194111000-00009
https://doi.org/10.1097/00010694-200004000-00001
https://doi.org/10.1111/j.1365-2486.2010.02278.x
https://doi.org/10.1038/nclimate1716
https://doi.org/10.1038/NCLIMATE3421
https://doi.org/10.1016/j.soilbio.2009.06.016
https://doi.org/10.1016/j.soilbio.2009.06.016
https://doi.org/10.1038/nrmicro2504
https://doi.org/10.1111/gcb.13012
https://doi.org/10.2136/sssaj
https://doi.org/10.1073/pnas.1018189108
https://doi.org/10.1016/j.gca.2011.03.006
https://doi.org/10.1016/j.gca.2011.03.006
https://doi.org/10.1126/science.2300815
https://doi.org/10.1016/j.geoderma.2019.01.040.


Oikawa, P. Y., Grantz, D. A., Chatterjee, A., Eberwein, J. E., Allsman, L. A., & Jenerette, G. D. (2014). Unifying soil respiration pulses,
inhibition, and temperature hysteresis through dynamics of labile soil carbon and O2. J. Geophys. Res. Biogeosciences, 119, 521–536.
https://doi.org/10.1002/2013JG002434

Parton, W. J., Schimel, D. S., Cole, C. V., Oiima, D. S., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in
Great Plains grasslands. Soil Sci. Soc. Am. J., 51(i), 1173–1179.

Peña, E. A., & Slate, E. H. (2017). Global validation of linear model assumptions. 1459. https://doi.org/10.1198/016214505000000637
Penn, C. J. (2010). Isothermal titration calorimetry as an indicator of phosphorus sorption behavior. Soil Sci. Soc. Am. J.,

74(2). https://doi.org/10.2136/sssaj2009.0199
Penn, C. J., & Warren, J. G. (2009). Investigating phosphorus sorption onto. Soil Science Society of America Journal, 73. https://doi.org/

10.2136/sssaj2008.0198
Pickett, S. (1989). In G. E. Likens (Ed.), Space‐for‐time substitution as an alternative to long‐term studies. New York: Springer‐Verlag.
Pignatello, J. J. (1999). The measurement and interpretation of sorption and desorption rates for organic compounds in soil media. Adv.

Agron., 69, 1–73. https://doi.org/10.1016/S0065‐2113(08)60946‐3
Placella, S. A., Brodie, E. L., & Firestone, M. K. (2012). Rainfall‐induced carbon dioxide pulses result from sequential resuscitation of

phylogenetically clustered microbial groups. Proc. Natl. Acad. Sci., 109(27), 10,931–10,936. https://doi.org/10.1073/pnas.1204306109
Plante, A. F., Fernández, J. M., Haddix, M. L., Steinweg, J. M., & Conant, R. T. (2011). Biological, chemical and thermal indices of

soil organic matter stability in four grassland soils. Soil Biol. Biochem., 43(5), 1051–1058. https://doi.org/10.1016/j.
soilbio.2011.01.024

Post, W. M., Emanuel, W. R., Zinke, P. J., & Stangenberger, A. G. (1982). Soil carbon pools and world life zones.Nature, 298(5870), 156–159.
https://doi.org/10.1038/298156a0

R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
https://www.R‐project.org/

Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.
Tellus, 44B, 81–99.

Ratkowsky, D., Olley, J., & Ross, T. (2005). Unifying temperature effects on the growth rate of bacteria and the stability of globular proteins.
J. Theor. Biol., 233(3), 351–362. https://doi.org/10.1016/j.jtbi.2004.10.016

Raymer, P. C. L., Orwig, D. A., & Finzi, A. C. (2013). Hemlock loss due to the hemlock woolly adelgid does not affect ecosystem C storage
but alters its distribution. Ecosphere, 4, 63. https://doi.org/10.1890/ES12‐00362.1

Riley, W. J., Maggi, F., Kleber, M., Torn, M. S., Tang, J. Y., Dwivedi, D., & Guerry, N. (2014). Long residence times of rapidly decomposable
soil organic matter: Application of a multi‐phase, multi‐component, and vertically resolved model (BAMS1) to soil carbon dynamics.
Geosci. Model Dev., 7(4), 1335–1355. https://doi.org/10.5194/gmd‐7‐1335‐2014

Rodrigo, A., Recous, S., Neel, C., & Mary, B. (1997). Modelling temperature and moisture effects on C‐N transformations in soils:
Comparison of nine models. Ecol. Modell., 102(2–3), 325–339. https://doi.org/10.1016/S0304‐3800(97)00067‐7

Rousk, J., Frey, S. D., & Bååth, E. (2012). Temperature adaptation of bacterial communities in experimentally warmed forest soils. Glob.
Chang. Biol., 18(10), 3252–3258. https://doi.org/10.1111/j.1365‐2486.2012.02764.x

Rumpel, C., & Kögel‐Knabner, I. (2011). Deep soil organic matter‐a key but poorly understood component of terrestrial C cycle. Plant Soil,
338(1‐2), 143–158. https://doi.org/10.1007/s11104‐010‐0391‐5

Ryan, E. M., Ogle, K., Kropp, H., Samuels‐Crow, K. E., Carrillo, Y., & Pendall, E. (2018). Modeling soil CO2 production and transport with
dynamic source and diffusion terms: Testing the steady‐state assumption using DETECT v1.0. Geosci. Model Dev., 11(5), 1909–1928.
https://doi.org/10.5194/gmd‐11‐1909‐2018

Saleska, S. R., Shaw, M. R., Fischer, M. L., Dunne, J. A., Still, C. J., Holman, M. L., & Harte, J. (2002). Plant community composition
mediates both large transient decline and predicted long‐term recovery of soil carbon under climate warming.Global Biogeochem. Cycles,
16(4), 1055. https://doi.org/10.1029/2001GB001573

Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., et al. (1994). Climatic, edaphic, and biotic controls
over storage and turnover of carbon in soils. Global Biogeochem. Cycles, 8(3), 279–293. https://doi.org/10.1029/94GB00993

Schindlbacher, a., Rodler, a., Kuffner, M., Kitzler, B., Sessitsch, a., & Zechmeister‐Boltenstern, S. (2011). Experimental warming effects on
the microbial community of a temperate mountain forest soil. Soil Biol. Biochem., 43(7), 1417–1425. https://doi.org/10.1016/j.
soilbio.2011.03.005

Schindlbacher, A., Schnecker, J., Takriti, M., Borken, W., &Wanek, W. (2015). Microbial physiology and soil CO2 efflux after 9 years of soil
warming in a temperate forest—No indications for thermal adaptations. Glob. Chang. Biol.. https://doi.org/10.1111/gcb.12996

Schipper, L. A., Hobbs, J. K., Rutledge, S., & Arcus, V. L. (2014). Thermodynamic theory explains the temperature optima of soil microbial
processes and high Q10 values at low temperatures. Glob. Chang. Biol., 20(11), 3578–3586. https://doi.org/10.1111/gcb.12596

Sierra, C., &Muller, M. (2015). A general mathematical framework for representing soil organic matter dynamics. Ecol. Monogr., 85, 16881.
https://doi.org/10.1890/15‐0361.1

Sinsabaugh, R. L., Moorhead, D. L., Xu, X., & Litvak, M. E. (2017). Plant, microbial and ecosystem carbon use efficiencies interact to sta-
bilize microbial growth as a fraction of gross primary production. New Phytol., 214(4), 1518–1526. https://doi.org/10.1111/nph.14485

Sistla, S. A., Rastetter, E. B., & Schimel, J. P. (2014). Responses of a tundra system to warming using SCAMPS: A stoichiometrically coupled,
acclimating microbeplantsoil model. Ecol. Monogr., 84(1), 151–170. https://doi.org/10.1890/12‐2119.1

Six, J., Elliot, E. T., & Paustian, K. (2000). Soil microaggregate turnover and microaggregate formation: A mechanism for C organic under
no‐tillage agriculture. Soil Biol. Biochem., 32(14), 2099–2103. https://doi.org/10.1016/S0038‐0717(00)00179‐6

Sulman, B., Moore, J. A. M., Abramoff, R., Averill, C., Kivlin, S., Georgiou, K., et al. (2018). Multiple models and experiments underscore
large uncertainty in soil carbon dynamics. Biogeochemistry, 141(2), 109–123. https://doi.org/10.1007/s10533‐018‐0509‐z

Sulman, B. N., Phillips, R. P., Oishi, A. C., Shevliakova, E., & Pacala, S. W. (2014). Microbe‐driven turnover offsets mineral‐mediated sto-
rage of soil carbon under elevated CO2. Nat. Clim. Chang., 4, 1099–1102. https://doi.org/10.1038/NCLIMATE2436

Tan, X. L., Chang, P. P., Fan, Q. H., Zhou, X., Yu, S. M., Wu, W. S., & Wang, X. K. (2008). Colloids and surfaces A: Physicochemical
and engineering aspects sorption of Pb (II) on Na‐rectorite: Effects of pH, ionic strength, temperature, soil humic acid and fulvic
acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 328(1‐3), 8–14. https://doi.org/10.1016/j.colsurfa.2008.
06.022

Tang, J., & Riley, W. J. (2015). Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Chang.,
56–60. https://doi.org/10.1038/nclimate2438

Tang, J. Y. (2015). On the relationships between theMichaelis–Menten kinetics, reverse Michaelis–Menten kinetics, equilibrium chemistry
approximation kinetics, and quadratic kinetics. Geosci. Model Dev., 8(12), 3823–3835. https://doi.org/10.5194/gmd‐8‐3823‐2015

10.1029/2018GB006001Global Biogeochemical Cycles

ABRAMOFF ET AL. 775

https://doi.org/10.1002/2013JG002434
https://doi.org/10.1198/016214505000000637
https://doi.org/10.2136/sssaj2009.0199
https://doi.org/10.2136/sssaj2008.0198
https://doi.org/10.2136/sssaj2008.0198
https://doi.org/10.1016/S0065-2113(08)60946-3
https://doi.org/10.1073/pnas.1204306109
https://doi.org/10.1016/j.soilbio.2011.01.024
https://doi.org/10.1016/j.soilbio.2011.01.024
https://doi.org/10.1038/298156a0
https://www.R-project.org/
https://doi.org/10.1016/j.jtbi.2004.10.016
https://doi.org/10.1890/ES12-00362.1
https://doi.org/10.5194/gmd-7-1335-2014
https://doi.org/10.1016/S0304-3800(97)00067-7
https://doi.org/10.1111/j.1365-2486.2012.02764.x
https://doi.org/10.1007/s11104-010-0391-5
https://doi.org/10.5194/gmd-11-1909-2018
https://doi.org/10.1029/2001GB001573
https://doi.org/10.1029/94GB00993
https://doi.org/10.1016/j.soilbio.2011.03.005
https://doi.org/10.1016/j.soilbio.2011.03.005
https://doi.org/10.1111/gcb.12996
https://doi.org/10.1111/gcb.12596
https://doi.org/10.1890/15-0361.1
https://doi.org/10.1111/nph.14485
https://doi.org/10.1890/12-2119.1
https://doi.org/10.1016/S0038-0717(00)00179-6
https://doi.org/10.1007/s10533-018-0509-z
https://doi.org/10.1038/NCLIMATE2436
https://doi.org/10.1016/j.colsurfa.2008.06.022
https://doi.org/10.1016/j.colsurfa.2008.06.022
https://doi.org/10.1038/nclimate2438
https://doi.org/10.5194/gmd-8-3823-2015


Tang, J. Y., & Riley, W. J. (2013). A total quasi‐steady‐state formulation of substrate uptake kinetics in complex networks and an example
application to microbial litter decomposition. Biogeosciences, 10(12), 8329–8351. https://doi.org/10.5194/bg‐10‐8329‐2013

Tian, Q., He, H., Cheng, W., Bai, Z., Wang, Y., & Zhang, X. (2016). Factors controlling soil organic carbon stability along a temperate forest
altitudinal gradient. Sci. Rep., 6(1), 1–9. https://doi.org/10.1038/srep18783

Torn, M. S., Chabbi, A., Crill, P., Hanson, P. J., Janssens, I. A., Luo, Y., et al. (2015). A call for international soil experiment networks for
studying, predicting, and managing global change impacts. Soil, 1(2), 575–582. https://doi.org/10.5194/soil‐1‐575‐2015

Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., & Hendricks, D. M. (1997). Mineral control of soil organic carbon storage
and turnover content were measured by horizon down to the depth at which. Nature, 389(1992), 3601–3603. https://doi.org/10.1038/
38260

Townsend, A. R., Vitousek, P. M., & Trumbore, S. E. (1995). Soil organic matter dynamics along gradients in temperature and land use on
the island of Hawaii. Ecology, 76(3), 721–733. https://doi.org/10.2307/1939339

Trumbore, S. (2009). Radiocarbon and soil carbon dynamics. Annual Review of Earth and Planetary Sciences, 37, 47–66. https://doi.org/
10.1146/annurev.earth.36.031207.124300

van Gestel, N., Shi, Z., Van Groenigen, K. J., Osenberg, C. W., Andresen, L. C., Dukes, J. S., et al. (2018). Predicting soil carbon loss with
warming. Nature, 554(7693), E7–E8. https://doi.org/10.1038/nature25746

Wang, G., Post, W. M., & Mayes, M. a. (2013). Development of microbial‐enzyme‐mediated decomposition model parameters through
steady‐state and dynamic analyses. Ecol. Appl., 23(1), 255–272. https://doi.org/10.1890/12‐0681.1

Waring, B. G., & Powers, J. S. (2016). Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests.
Environ. Res. Lett., 11(10), 105005. https://doi.org/10.1088/1748‐9326/11/10/105005

Wieder, W. R., Allison, S. D., Davidson, E. A., Georgiou, K., Hararuk, O., He, Y., et al. (2015). Explicitly representing soil microbial pro-
cesses in Earth system models. Global Biogeochem. Cycles, 29, 1782–1800. https://doi.org/10.1002/2015GB005188.Received

Wieder, W. R., Bonan, G. B., & Allison, S. D. (2013). Global soil carbon projections are improved by modelling microbial processes. Nat.
Clim. Chang., 3(10), 909–912. https://doi.org/10.1038/nclimate1951

Zhang, W., Parker, K. M., Luo, Y., Wan, S., Wallace, L. L., & Hu, S. (2005). Soil microbial responses to experimental warming and clipping
in a tallgrass prairie. Glob. Chang. Biol., 11(2), 266–277. https://doi.org/10.1111/j.1365‐2486.2005.00902.x

Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., et al. (2012). Microbial mediation of carbon‐cycle feedbacks to climate warming.
Nature Climate Change, 2, 430074. https://doi.org/10.1038/NCLIMATE1331

Zhu, Q., Riley, W. J., & Tang, J. (2017). A new theory of plant–microbe nutrient competition resolves inconsistencies between observations
and model predictions. Ecol. Appl., 27(3), 875–886. https://doi.org/10.1002/eap.1490

Zimmermann, M., & Bird, M. I. (2012). Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with
ongoing decomposition. Geoderma, 187‐188, 8–15. https://doi.org/10.1016/j.geoderma.2012.04.015

Zogg, G. P., Zak, D. R., Ringelberg, D. B., White, D. C., MacDonald, N. W., & Pregitzer, K. S. (1997). Compositional and functional shifts in
microbial communities due to soil warming. Soil Sci. Soc. Am. J., 61(2), 475. https://doi.org/10.2136/sssaj1997.03615995006100020015x

10.1029/2018GB006001Global Biogeochemical Cycles

ABRAMOFF ET AL. 776

https://doi.org/10.5194/bg-10-8329-2013
https://doi.org/10.1038/srep18783
https://doi.org/10.5194/soil-1-575-2015
https://doi.org/10.1038/38260
https://doi.org/10.1038/38260
https://doi.org/10.2307/1939339
https://doi.org/10.1146/annurev.earth.36.031207.124300
https://doi.org/10.1146/annurev.earth.36.031207.124300
https://doi.org/10.1038/nature25746
https://doi.org/10.1890/12-0681.1
https://doi.org/10.1088/1748-9326/11/10/105005
https://doi.org/10.1002/2015GB005188.Received
https://doi.org/10.1038/nclimate1951
https://doi.org/10.1111/j.1365-2486.2005.00902.x
https://doi.org/10.1038/NCLIMATE1331
https://doi.org/10.1002/eap.1490
https://doi.org/10.1016/j.geoderma.2012.04.015
https://doi.org/10.2136/sssaj1997.03615995006100020015x


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


