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Abstract Soil decomposition models range from simple empirical functions to those that represent
physical, chemical, and biological processes. Here we develop a parsimonious, modular C and N cycle
model, the Dual Arrhenius Michaelis-Menten-Microbial Carbon and Nitrogen Phyisology (DAMM-MCNiP),
that generates testable hypotheses regarding the effect of temperature, moisture, and substrate supply on
C and N cycling. We compared this model to DAMM alone and an empirical model of heterotrophic
respiration based on Harvard Forest data. We show that while different model structures explain similar
amounts of variation in respiration, they differ in their ability to infer processes that affect C flux. We
applied DAMM-MCNiP to explain an observed seasonal hysteresis in the relationship between respiration
and temperature and show using an exudation simulation that the strength of the priming effect
depended on the stoichiometry of the inputs. Low C:N inputs stimulated priming of soil organic matter
decomposition, but high C:N inputs were preferentially utilized by microbes as a C source with limited
priming. The simplicity of DAMM-MCNiP’s simultaneous representations of temperature, moisture,
substrate supply, enzyme activity, and microbial growth processes is unique among microbial physiology
models and is sufficiently parsimonious that it could be incorporated into larger-scale models of C and
N cycling.

Plain Language Summary Microorganisms that grow in the soil, like bacteria and fungi, affect how
much carbon resides in the soil and how much is released to the atmosphere as CO2. Mathematical models
used to make climate change predictions often struggle to capture the activity of soil microbes in realistic
ways. This study uses well-established descriptions of water and temperature effects on soil microbes to
predict rate of carbon and nitrogen cycling in the soil. Our new model reproduces the changing relationship
between temperature and microbial respiration during the growing season. We also show using a
theoretical addition of root secretions that the microbial response depends on the nitrogen content of the
added plant material. This model is simple and based on well defined physical and biological properties, and
could be developed to model microbial activity at larger scales.

1. Introduction

Soil microorganisms cycle C and N through the biosphere [Schlesinger, 2005], incorporating these elements
into cellular materials that are eventually mineralized into carbon dioxide (CO2) and inorganic nitrogen (N).
Soil is the largest terrestrial carbon (C) pool, and the flux of CO2 from the soil to the atmosphere is dominated
by microbial decomposition [Schlesinger and Bernhardt, 2013]. Hence, the rate of C mineralized by soil
microorganisms affects the global C cycle.

The rate of C and N mineralization is often correlated with changes in temperature and precipitation, and
from this relationship one can construct an empirical function between soil temperature, moisture, and
mineralization rates [Stanford et al., 1973; Stanford and Epstein, 1974; Rodrigo et al., 1997]. Empirical soil tem-
perature and moisture functions are used in terrestrial biosphere models for the purpose of projecting future
mineralization rates under global change scenarios [Coleman and Jenkinson, 1996; Parton et al., 1987]. The
temperature sensitivity of soil organic matter (SOM) depolymerization conforms to Arrhenius kinetics
[Lloyd and Taylor, 1994]. However, soil temperature is not always the dominant driver of microbial activity,
especially when substrate supply is limiting. When aerobic heterotrophs have limited access to C
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monomers, either due to diffusion limitation or lack of oxygen (O2), then alternative kinetics of substrate
and/or enzyme concentration may better constrain mineralization rates (e.g., Michaelis-Menten, Reverse
Michaelis-Menten, and equilibrium chemistry approximation) [Tang, 2015].

Despite well-known effects of temperature and substrate supply on the activity of soil microbes, microbial
processes themselves are rarely explicitly included in terrestrial biosphere models. In these models, decom-
position rate is determined using a rate constant that may vary as a function of soil temperature or moisture
[Jenkinson et al., 1990; Bolker et al., 1998]. Indeed, none of the models in the Fifth Coupled Model
Intercomparison Project (CMIP5) have process level representation of microbial physiology [Todd-Brown
et al., 2013]. Where they have been included, the models suggest that representing microbes may improve
predictions of soil C storage at the global scale [Wieder et al., 2013; Hararuk et al., 2015].

There are a number of theoretical microbial models that are candidates for scaling to ecosystem and global
applications [Wieder et al., 2014, 2015], either by direct incorporation or by representing relevant mechan-
isms using simplified relationships (in the sense of Xu et al. [2014]). These models vary widely in complexity
(Table S1 in the supporting information). Some models include explicit decomposition, uptake, and
construction of degradative enzymes [Schimel and Weintraub, 2003; Allison et al., 2010; He et al., 2015;
Tang and Riley, 2015], while others assume that decomposition rate is a function of microbial biomass
[Ahrens et al., 2015] or that decomposition and uptake rates are identical [German et al., 2012; Sulman
et al., 2014; Wieder et al., 2015]. Some focus only on temperature as the driver of decomposition kinetics,
while others include substrate supply [Tang and Riley, 2015] or diffusion limitation on substrate availability
[Davidson et al., 2012; Manzoni et al., 2014].

Many soil decomposition models ignore the role of N in regulating C mineralization and vice versa
[Moorcroft et al., 2001; Lawrence et al., 2009; Shevliakova et al., 2009], instead using soil N concentration
to modify mineralization rates [Grant et al., 1993; Manzoni and Porporato, 2009], using C quality as a
proxy for N limitation (but see Moorhead and Sinsabaugh [2006] and Sistla et al. [2014]) or omitting
the N cycle entirely [Allison et al., 2010; Wang et al., 2013; Sulman et al., 2014]. Microbes utilize C and
N in plant litter and root exudates, as well as free monomers that have been cleaved from polymeric
soil organic matter by extracellular enzymes [Brzostek and Finzi, 2011; Frey et al., 2013]. Plant input
and soil organic matter C-to-N ratios (C:N) range from 25 to 300+ and 10 to 30+, respectively, and
are usually significantly higher than that of microbial biomass (5–17) and extracellular enzymes (~3)
[McGroddy et al., 2004; Wallenstein et al., 2006; Cleveland and Liptzin, 2007; Brzostek and Finzi, 2011;
Weintraub et al., 2012]. As a result, microbial populations are often N limited, especially in organic, sur-
face soils [Mooshammer et al., 2014]. This may explain why an increase in C-rich plant inputs can induce
microbial population growth and nutrient limitation, which results in the production of extracellular
enzymes that decompose SOM and thereby release mineralized N (i.e., priming) [Brzostek et al., 2013;
Kuzyakov, 2010].

Stoichiometric constraints on decomposition are understood to be important to biogeochemical cycles at
seasonal-to-decadal time scales [e.g., Drake et al., 2013; Finzi et al., 2011]. It is not clear, however, whether
these constraints are necessary for accurate predictions of changes in SOM stocks and soil respiration.
Simple empirical models may be sufficient to gap fill or make projections based on previously observed cor-
relations, where predicted values remain within the ranges of values used to generate the correlation. In con-
trast, the goal of many models, especially microbial explicit models, is hypothesis testing and process level
understanding [e.g., Schimel and Weintraub, 2003; Allison et al., 2010], especially when interactions of driving
variables are not fully understood or where the model needs to be applied outside of a range of previous
observations, as may be the case for sustained climate change and N deposition. In such cases, additional
model complexity may be warranted to test and generate hypotheses about C and N cycling and to guide
future research priorities.

In this paper, we develop a model of soil biogeochemistry that couples the C and the N cycles and represents
microbial population growth and allocation to enzymes, DAMM-MCNiP. We tested the model’s ability to pre-
dict heterotrophic soil respiration measurements in a midlatitude forest located in central Massachusetts,
USA, compared to DAMM alone and a simple Arrhenius temperature model. We used a theoretical plant input
addition experiment to demonstrate DAMM-MCNiP’s utility in exploring plausible microbial, enzymatic, and
soil C and N responses to changes in substrate supply.
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2. Methods
2.1. Data

To test model performance, we used measurements of soil temperature, moisture, and C efflux from a tren-
ching experiment at Harvard Forest, MA. A trench was dug to 1 m depth around a 5 × 5 m area in November
2008 in a mixed hardwood stand at the Little Prospect Hill tract of Harvard Forest. Automated measurements
of C efflux were collected from April to October 2009 [Savage et al., 2013]. We used C efflux from trenched
plots as an estimate of heterotrophic respiration. This data set is described in greater detail in Davidson
et al. [2012] and Savage et al. [2013].

Although trenching is a widely used technique for estimating heterotrophic respiration in soil [Giasson
et al., 2013], the treatment changes the soil environment in a way that may cause systematic biases in
respiration measurements. For example, soil moisture is generally higher in trenched plots due to a lack of
transpiration from live plants, and decomposition of dead roots may increase the measured heterotrophic
respiration [Epron et al., 1999]. These effects can persist many months after the trenching treatment, but
other field techniques for measuring heterotrophic respiration either affect the soil environment in a similar
way to trenching [Högberg et al., 2001] or use proxies to partition C sources [Schuur and Trumbore, 2006].

2.2. Model Descriptions
2.2.1. Arrhenius Model
The Arrhenius equation to estimate the rate of a reaction is a null model to the more process-based models
DAMM and DAMM-MCNiP, described below [Arrhenius, 1889a, 1889b]. It serves as an analogue for the first-
order relationships with temperature commonly used in terrestrial biosphere models, although the specific
functional forms used in these models vary [Parton et al., 1987; Jenkinson and Coleman, 2008]. We fit an
Arrhenius function to soil temperature to predict the C efflux, FC,

FC ¼ α� e�Ea=RT (1)

where α is the preexponential constant (mg C cm�3 h�1), T is soil temperature (K) at 10 cm depth, Ea is the
activation energy (kJ/mol), and R is the universal gas constant (kJ mol�1 K�1). This model is based on the
assumption that temperature is the main effect on the depolymerization rate and that depolymerization is
the rate-limiting process controlling C efflux.
2.2.2. Dual Arrhenius and Michaelis-Menten Model
The Dual Arrhenius and Michaelis-Menten Model (DAMM) simulates the effects of soil temperature, soil
moisture, and substrate supply on soil organic matter (SOM) depolymerization. Depolymerization is affected
by soil temperature according to Arrhenius kinetics. Soil water content modifies the supply of two substrates,
oxygen and a generalized C-containing substrate, both of which affect depolymerization using a Michaelis-
Menten (i.e., dual Monod) kinetic approximation,

Depolymerization rate ¼ VmaxS �
S½ �

kMS þ S½ � �
O2½ �

kMO2 þ O2½ � (2)

VmaxS ¼ α � e�Ea=RT (3)

where VmaxS is themaximum reaction rate calculated using the Arrhenius equation as above (equation (1)), [S]
is the C substrate concentration, kMS is the half-saturation constant for the C substrate, [O2] is the oxygen
concentration, and kMO2 is the half-saturation constant for oxygen. Oxygen concentration limits the depoly-
merization rate when soil water content is high, and C substrate supply limits depolymerization when soil
water content is low because the substrate cannot diffuse to the reaction site. A complete description of
the model equations and default parameters are available in Davidson et al. [2012, 2014]. The default para-
meters in DAMM were fit using the C efflux data set described above (section 2.1).
2.2.3. DAMM and the Microbial Carbon and Nitrogen Physiology Model
The DAMM model was combined with a microbial explicit C and N-cycling model, appropriately named the
Microbial Carbon and Nitrogen Physiology Model (MCNiP), described in Finzi et al. [2015]. The combined
model tracks seven pools, soil organic C (SOC) and N (SON), dissolved organic C (DOC) and N (DON), microbial
biomass C and N, and extracellular enzymes (Figure 1). The terms “DOM” (dissolved organic matter) and
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“SOM” suggest that the former is in solution and the latter may or may not be soluble. In this model, we define
DOM as monomeric and always in solution, while SOM is polymeric and can exist in both solid and aqueous
phases (Texts S1 and S3). The combined model separates depolymerization from microbial uptake, and it
allows feedback from C or N limitation of microbial processes to depolymerization via enzyme production.
By combining DAMM and MCNiP into one model, it is possible to simulate the response of microbial
activity to simultaneous changes in temperature, soil moisture, and substrate stoichiometry.

Soil temperature andmoisture inputs constrain the rate of unprotected SOM depolymerization and uptake of
dissolved organic matter C and N (DOMCN) to the microbial biomass pool. The temperature sensitivity of SOM
depolymerization to DOMCN is controlled by Arrhenius kinetics. We modified the way that the supply of SOM
and enzymes affect the depolymerization rate. In Finzi et al. [2015], MCNiP used forward Michaelis-Menten
kinetics, but DAMM-MCNiP can have a very limited available substrate pool, especially when the soil is dry.
As a result the enzyme and available substrate concentrations can be similar to each other, potentially violat-
ing the assumption of both forward Michaelis-Menten kinetics where available SOM ≫ enzyme concentra-
tions, and reverse Michaelis-Menten kinetics where enzyme ≫ available SOM [Wang and Post, 2013].
Therefore, we use equilibrium approximation kinetics, a generalization of Michaelis-Menten kinetics for
DAMM-MCNiP that makes no assumption about the relative size of the available SOM or enzyme pools,

Depolymerization rate ¼ V maxS � SOMavail½ � � Enz½ �
kMdep þ SOMavail½ � þ Enz½ � (4)

VmaxS ¼ αdep� e�Eadep=RT (5)

where VmaxS is the maximum reaction rate determined using Arrhenius kinetics, [SOMavail] is the concentra-
tion of soluble, bio-available SOM (see Text S3, equation (S3)), [Enz] is the concentration of extracellular
enzyme at the reaction site, and kMdep is the half-saturation constant for enzymes. Microbial uptake of
DOMCN is limited by both DOMCN concentration and oxygen concentration,

Uptake rate ¼ V maxD � DOMCN½ �
kMupt þ DOMCN½ � �

O2½ �
kMO2 þ O2½ � (6)

V maxD ¼ αupt� e�Eaupt=RT (7)

where VmaxD is the maximum reaction rate, [DOMCN] is the concentration of DOMCN, and kMupt is the half-
saturation constant for DOMCN. C or N uptake is partitioned in the microbial pool to maintenance, growth,

Figure 1. Conceptual model of DAMM-MCNiP. Orange boxes and arrows indicate components of the combinedmodel that originate fromDAMM, while green boxes
and arrows indicate components originating from MCNiP. Striped orange and green boxes and arrows share components from both models. Solid lines indicate
a transfer of mass, while dashed lines indicate an effect on a process rate. Depoly = depolymerization. θ = volumetric water content (m3 m�3). Plant inputs refer to
plant litter, which is partitioned to SOM and DOMCN pools at each time step (h�1). Root exudates enter the DOMCN pool only.
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and enzyme production. Enzyme production can be limited by either C or N according to Liebig’s law of the
minimum, consistent with the concept of overflow metabolism wherein excess C or N is mineralized after
maintenance, enzyme production, and biomass growth (in the sense of Schimel and Weintraub [2003]),

Enzyme production ¼ q� UPTN N limited½ � (8)

Enzyme production ¼ p� CUE� UPTCð Þ=CNE C limited½ � (9)

where q and p are partitioning coefficients, UPTC and UPTN are the C and N taken up in the current time step,
CUE is carbon use efficiency, and CNE is the C:N of enzymes. Inputs to the model include temperature, soil
moisture, litter, and if rhizosphere, root exudate C and N. Outputs used in this study are the seven C and N
pools as well as rates of C (i.e., C efflux) and N mineralization. For the purposes of this study we did not con-
sider microbial immobilization of mineralized N. Litter is partitioned to SOM and DOMCN pools at each time
step (h�1). Root exudates enter the DOMCN pool only. Both DOMCN inputs and the fraction of unprotected
SOM follow a prescribed seasonality (Text S1) [Farrar et al., 2003; Keiluweit et al., 2015]. In all model simula-
tions, we assumed an effective depth of 10 cm (in the sense of Davidson et al. [2012]).

Model parameters were identical to original DAMM and MCNiP parameters, except for the preexponential
constant (αdep), activation energy (Eadep), and half-saturation constant (Kmdep) for SOM depolymerization,
and the preexponential constant (αupt) and activation energy (Eaupt) for DOC uptake. In DAMM, these para-
meters were fit to the validation data set, so in order to provide default parameters for DAMM-MCNiP we esti-
mated αdep, Eadep, αupt, and Eaupt from incubation measurements of mean β-glucosidase activity in organic
and mineral soil [Davidson et al., 2012; Finzi et al., 2015]. The values for αdep and Eadep were set to be identical
to those for αupt and Eaupt, respectively, because we could not experimentally distinguish between depoly-
merization and uptake kinetics. The default value for the half-saturation constant, Kmdep, in DAMM-MCNiP
was estimated such that at standard temperature, 293 K (20°C), and the mean soil moisture value for this site,
0.229 cm3 H2O cm�3 soil, Kmdep was equal to the initial available substrate SOM concentration (in the sense
of Davidson et al. [2012]). In contrast to Allison et al. [2010], we did not choose a Kmdep larger than the avail-
able SOM pool. Microbes in MCNiP have access to the entire SOM pool, so using a Kmdep value that is high
relative to the SOM pool size prevents substrate from saturating enzymes at the reaction site. However,
microbes in DAMM-MCNiP do not have access to the entire SOM pool. Therefore, our parameterization of
DAMM-MCNiP allows for substrate to saturate a reaction site, for example, if substrate is temporarily mobi-
lized during a wet-up event [Birch, 1958; Sierra et al., 2015]. Additional comments on parameter value sources
and complete equations for DAMM-MCNiP can be found in Texts S2 and S3, respectively [Hopkinson et al.,
1997; Neff and Hooper, 2002; Schimel and Weintraub, 2003; Allison et al., 2010; Davidson et al., 2012; Lemos,
2013; Averill, 2014].

We spun up the model for 1000 years. DAMM-MCNiP pools update over time, so it was important that we
simulate a full year of soil temperature and moisture data during spin-up. We reconstructed a full year of soil
temperature measurements from growing season data using a linear fit to nearby Fisher Meterological
Station at the Harvard Forest. Measurements of soil temperature were collected at 15 min intervals [Boose
and VanScoy, 2015]. We fit hourly averaged soil temperature at 10 cm depth to measurements (described
below; R2 = 0.86, P < 0.001). We used this fit to estimate soil temperature at 10 cm depth at the Harvard
Forest site for the remainder of the year (Figure S1a). For soil moisture measurements, we used 2010 mea-
surements collected at 30 min intervals at the Harvard Forest Environmental Measurement Station tower
[Munger et al., 2016].

2.3. Model Evaluation

We used C efflux data collected at the Harvard Forest to fit each of the three models—the Arrhenius model,
DAMM alone, and DAMM-MCNiP. The Arrhenius model was fit to data using nonlinear least squares regres-
sion (function nls, package stats, R Version 3.2.0). DAMM parameter fitting was described in Davidson et al.
[2012]. DAMM-MCNiP was fit to the data set by minimizing the residuals of the model using a Newton-type
method (function modFit, method Newton, package FME, R Version 3.2.0; Table 1).

Linear regression was used to fit the output predicted by each model with C efflux measurements from
trenching and to estimate the root-mean-square error (RMSE) of the model fit. We computed the correlation
coefficient (Pearson’s ρ) betweenmodel-predicted C efflux and soil temperature or soil moisture. We used the
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ratio of ρtemperature to ρmoisture as an estimate of the sensitivity (ρsens) of modeled C efflux to temperature
relative to soil moisture,

ρsens ¼ ρtemperature=ρmoisture (10)

Values greater than 1 indicate that C efflux is more correlated with temperature than with soil moisture.

2.4. Sensitivity Analyses for DAMM-MCNiP

In order to partition the relative contribution of temperature, soil moisture, and plant inputs to explaining
variation in SOC pool size, we ran 125 model realizations ranging from �5°C to +5°C change from control
run temperature, and from 10% to 200% of default soil moisture and plant input values (Table S2). We built
a normalized regression relationship between SOC and temperature, soil moisture, and plant inputs and

Table 1. DAMM-MCNiP Model Parameter Abbreviations, Units, Default Values, and Values Fit to Data

Parameter Units Default Value Fit Value Description

Depth cm 10 - Depth assumption for all model pools
litterSOC mg cm�3 h�1 input input Litter input to SOC pool
litterDOC mg cm�3 h�1 input input Litter input to DOC pool
T K input input temperature in Kelvin
θ cm3 H2O cm�3 soil input input volumetric water content
BD g cm�3 0.80 0.76 bulk density
PD g cm�3 2.52 2.50 particle density
O2frac

a L O2 L
�1 air 0.209 0.203 volume fraction of O2 air

fraca g C cm3 g C cm�3 4.14 × 10�4 3.79 × 10�4 fraction of unprotected SOM, using soluble substrate estimated from
Magill et al. [2000]

dLiqa - 3.17 3.14 diffusion coefficient for unprotected SOM and DOCN in liquid
dGasa - 1.67 1.63 diffusion coefficient for O2 in air
kMO2

a cm3 O2 cm
�3 air 0.121 0.115 Half-saturation constant for O2

R kJ K�1 mol�1 8.31 × 10�3 8.31 × 10�3 universal gas constant
pa - 0.50 0.50 proportion of assimilated C allocated to enzyme production
qa - 0.50 0.50 proportion of assimilated N allocated to enzyme production
aa - 0.50 0.49 proportion of enzyme pool acting on SOC pool (1 � a = proportion

acting on SON pool)
initSOC mg cm�3 65.25 65.25 initial SOC pool
initSON mg cm�3 2.192 2.192 initial SON pool
initDOC mg cm�3 2.0 × 10�3 2.0 × 10�3 initial DOC pool
initDON mg cm�3 1.1 × 10�3 1.1 × 10�3 initial DON pool
initBiomassC mg cm�3 1.970 1.970 initial microbial biomass C
initBiomassN mg cm�3 0.197 0.197 initial microbial biomass N
refSOC mg cm�3 h�1 5.0 × 10�4 5.0 × 10�4 reference rate for input to SOC pool
ampSOC mg cm�3 h�1 5.0 × 10�4 5.0 × 10�4 amplitude of seasonal cycle for input to SOC pool
initEnz mg cm�3 0.0339 0.0339 initial enzyme pool
refDOC mg cm�3 h�1 5.0 × 10�4 5.0 × 10�4 reference rate for input to DOC pool
ampDOC mg cm�3 h�1 5.0 × 10�4 5.0 × 10�4 amplitude of seasonal cycle for input to DOC pool
rdeath

a h�1 1.5 × 10�4 1.5 × 10�4 microbial turnover rate
renzLoss

a h�1 1.0 × 10�3 1.0 × 10�3 enzyme turnover rate
micToSoma mg mg�1 0.50 0.49 fraction of dead microbial biomass allocated to SOM
αdep

a mg SOM cm�3 (mg Enz cm�3)�1 h�1 1.08 × 1011 1.06 × 1011 preexponential constant for SOM depolymerization
αupt

a mg DOC cm�3 (mg biomass cm�3)�1 h�1 1.08 × 1011 1.08 × 1011 preexponential constant for DOC uptake
kMdep

a mg cm�3 0.0025 0.0025 Half-saturation constant for SOM depolymerization
kMupt

a mg cm�3 0.30 0.29 Half-saturation constant for DOC uptake

CUEa mg mg�1 0.31 0.30 Carbon use efficiency
Eadep

a kJ mol�1 61.77 64.32 Ea for SOM depolymerization
Eaupt

a kJ mol�1 61.77 60.26 Ea for DOC uptake
CNS - 27.6 28.1 C:N of soil
CNL - 50.0 48.8 C:N of litter
CNM - 10.0 9.8 C:N of microbial biomass
CNE - 3.0 2.9 C:N of enzymes
CNEX - 27.6 28.1 C:N of root inputs

aParameter values included in the sensitivity analysis.
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calculated the partial R2 for each term (functions scale, lm.beta, partial.R2; packages lm.beta, asbio; R Version
3.2.0). All analyses were conducted in R Statistical Software (R Development Core Team, 2013).

We conducted a global variance-based sensitivity analysis in order to calculate the sensitivity of C efflux to
18 of the parameter values listed in Table 1. We calculated a first-order sensitivity index that is bound
between 0 and 1,

Si ¼
VARpi Epei

Yjpið Þ
� �
VAR Yð Þ (11)

where pi is the ith parameter, p~i are all parameters that are not the ith parameter, VAR is the variance, and E is
the expectation [Saltelli et al., 2010]. For each parameter, we sampled across a range of the parameter’s
default value ±10% with 60,000 model evaluations following the Sobol sampling method [Saltelli et al.,
2008]. We performed this analysis in Matlab [2017], using the toolbox SAFE R1.1 [Pianosi et al., 2015].

Collinearity refers to correlation between two or more variables, traditionally in a linear regression. In a
numerical model, high collinearity makes it difficult to fit parameters because two or more parameters
may trade off with each other, resulting in many combinations of parameter values with equal model fit.
To determine whether there is collinearity among the parameters in the DAMM-MCNiP model, we performed
a parameter identifiability test that estimates a collinearity index for the fitted parameters (function collin,
package FME, R Version 3.2.0). The collinearity index, γ, is an estimate of linear dependence, with a lower
bound of 1 when all terms are orthogonal and an upper bound of infinity when all terms are linearly depen-
dent. The most useful interpretation of γ is that a change in one parameter can be compensated by a 1� 1/γ
change in other parameters, so at γ = 20, 95% of the effect of a change in one parameter can be compensated
by modifying the values of other parameters, thereby limiting the identifiability of the model parameters
[Brun et al., 2001; Omlin et al., 2001].

2.5. Double Input Experiment With DAMM-MCNiP

We simulated three input scenarios where C and N were added in varying amounts and with different stoi-
chiometry to study changes in soil C and N pools. These scenarios are analogous to plant input manipulations
or as a result of root exudation. To isolate the effect of stoichiometry on soil C and N pools, we ran the model
with constant soil temperature andmoisture using default parameter values. Each simulation ran for 190 days
with 0.96 gC m�2 d�1 of plant input, about 2.4 gC/kg soil (0.96 gC/m2 d × 190 days ÷ 76 kg soil/m2 bulk
density), within the range of other priming studies [Fontaine et al., 2004; Graaff et al., 2010]. Litter inputs to
the SOM pool and root exudate inputs to the DOM pool had a C:N of 50 [Abramoff and Finzi, 2016] and
27.6 (Text S2), respectively. On day 95, we added double C inputs (C:N of 55.2), double N inputs (C:N of
13.8), or both (C:N of 27.6) to the DOM pool. Although we applied the doubled C and N treatments as if they
were a single element fertilization, from a microbial perspective, these treatments are identical to changing
the stoichiometry of the incoming plant input. Therefore, one could also think of the treatments as C-rich
inputs, N-rich inputs, and double inputs, respectively. A control run with no change to C and N inputs was
used to normalize the C and N pools for comparison. We considered absolute changes in soil pools and fluxes
as well as changes to the proportion of C efflux that is made up of decomposed SOC, analogous to priming
experiments that partition C efflux into native and added C using enriched C isotope tracers [Graaff et al.,
2010; Hartley et al., 2012; Murphy et al., 2015;Wild et al., 2016]. We tracked the fate of input DOM by verifying
that changes to the microbial biomass and enzyme pools were small (<2% of initial value) such that at each
time step, C efflux ≈ Inputs + SOC decomposition.

3. Results
3.1. Model Performance

From a visual inspection of the model output all three models captured the seasonality of C efflux well
(Figure 2a). The Arrhenius model and DAMMpredicted similar rates of C efflux, while DAMM-MCNiP predicted
a slightly lower rate, especially during the shoulder seasons when there was lower input from litter decom-
position. All three models explained 52–56% of the variation in the C efflux data and had little bias in the
slope of the relationship between the predicted and measured C efflux (slope = 0.93–1.04; Figure 2b and S2).
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In all three models, the Pearson correlation coefficient (ρ) between model-predicted C efflux and soil tem-
perature at 10 cmwas on average ~4 times greater than that for soil moisture at 2–8 cm. The mean ρ for tem-
perature was 0.91 (standard deviation = 0.10), and the mean ρ for moisture was 0.22 ± 0.2 (Table 2). The
Arrhenius model was necessarily more sensitive to temperature than soil moisture (ρsens = 32) because soil
moisture was not included in the function. DAMM alone was also more sensitive to temperature compared
to soil moisture, with a ρsens of 4.6. Of the three models, DAMM-MCNiP was most sensitive to soil moisture
(ρsens = 1.8), especially at shorter time scales. The correlation coefficient between DAMM-MCNiP and soil
moisture was greater than 0.96 for three different 5 day periods spanning rain events (DOY 125–130, 197–
202, and 240–245), compared to ρ = 0.43 for the whole growing season (Table 2). Further, the correlation
coefficient between DAMM-MCNiP and soil moisture was greater over short compared to long time intervals
regardless of whether or not a rain event was present (Figure S3).

Across model realizations of DAMM-MCNiP, temperature explained 23% of the variation in the SOC pool size
after 1 year, while soil moisture and plant inputs explained 14% and 23%, respectively. The total variation in
SOC explained by DAMM-MCNiP was 41% (SOC ~ temperature + poly(soil moisture) + inputs; F4,120 = 22.87,
P < 0.0001, and R2adj = 0.41). DAMM-MCNiP simulated a temperature hysteresis in the seasonal C efflux that
matched the measured temperature hysteresis (Figures 3a and 3b). In contrast, the DAMM and Arrhenius
models did not have a hysteresis between temperature and C efflux (Figures 3c and 3d). C efflux was
elevated in the midgrowing season (DOY 150–200) relative to the fall (DOY 200–270).

3.2. Sensitivity Analyses for DAMM-MCNiP

A 5°C increase in soil temperature increased C efflux relative to ambient soil temperature by 73 gC m�2 over
the growing season (gs�1; pink symbols; Figure 4a). Similarly, a 50% decrease in soil moisture suppressed C
efflux by 116 gC m�2 gs�1 (blue symbols; Figure 4a). C efflux was nonlinearly related to changes in both

temperature and moisture. In parti-
cular, the effect of warming or
drought increased over the growing
season as the treatment persisted
(Figure 4b). A 50% decrease in plant
inputs caused a ~50% decrease in C
efflux, summing to 148 gC m�2

gs�1. In contrast to the warming
and drought experiments, plant
inputs were approximately linearly

Figure 2. (a) Time series of observed (black symbols) and predicted (colored symbols) C efflux rate and (b) linear regression of observed and predicted C efflux rate
using DAMM-MCNiP (slope = 0.93, R2adj = 0.56, and RMSE = 0.25), DAMM (slope = 1.04, R2adj = 0.55, and RMSE = 0.26), and Arrhenius (slope = 1.03, R2adj = 0.52,
and RMSE = 0.27). The gray dashed line is the 1:1 line. Colored dashed lines are the regression fit for each model. RMSE is the root-mean-square error. All model fits
were significant at the P < 0.001 level.

Table 2. Pearson Correlation Coefficients Between Model-Predicted C
Efflux and Soil Temperature or Soil Moisture in Each Year

Soil Temperature
(°C)

Soil Moisture
(cm3 H2O cm�3 soil)

DAMM-MCNiP 0.80 0.43
DAMM 0.96 0.21
Arrhenius 0.99 0.03
2009 Data 0.82 0.24
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related to C efflux (yellow symbols; Figure 4b). Warming and plant input removal resulted in an SOC decline of
about 1% over the growing season, while drought resulted in ~2% increase in the SOC pool (Figure 4c).

Of the parameters included in the global, variance-based sensitivity analysis, activation energy of depolymer-
ization (Eadep) was by far the most sensitive parameter (Figure S4a), followed by the activation energy of
uptake (Eaupt) when Eadep was excluded from the analysis (Figure S4b). The preexponential constant for
decomposition (αdep), liquid diffusivity (dLiq), and the average fraction of SOM that is not chemically or phy-
sically protected (refFrac) also had a sensitivity index greater than 0.2. The activation energy of depolymeri-
zation determined by the model fit to trenching data was 64 kJ mol�1. The activation energy of uptake was
estimated to be 60 kJ mol�1.

Parameter collinearity is not commonly reported, but was relatively low for DAMM-MCNiP (Figure S5)
compared to two simple four- and five-parameter models with collinearity indices of 59 and 19,487,389,
respectively [Brun et al., 2001; Soetaert, 2016]. Even with all 26 parameters included, the collinearity index
for DAMM-MCNiP never exceeded 45.

3.3. Double Input Experiment With DAMM-MCNiP

Doubling root C input immediately increased the DOC pool size and efflux rate by 40–80%. Both increased
nonlinearly with respect to microbial biomass C and N (Figure 5a). Microbial biomass production increased
linearly with C addition. Doubling root C input increased uptake of DON, and the size of this pool decreased as
a result. Despite the large increase in C efflux, no additional SOC was decomposed (Figure 5d) and as a result
the proportion of C efflux made up of decomposed SOC declined from 41% to 30% after C addition.

Figure 3. Weekly average C efflux rate plotted against temperature during (a) the 2009 growing season at the Harvard Forest trenched plots (“Data”), (b) DAMM-
MCNiP-simulated bulk soil (“DAMM-MCNiP”), (c) DAMM-simulated bulk soil (“DAMM”), and (d) predictions from the Arrhenius model (“Arrhenius”). The text
indicates the day of year (DOY), and the arrowheads indicate the transition from the start (DOY 113) to the end (DOY 303) of the growing season. The gray lines
behind each point are the standard error of the mean.
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When N inputs were doubled,
there was a large, nonlinear
increase in total enzyme produc-
tion as an apparent N limitation
of enzyme production was
relieved, and the DON pool
increased by ~60%. There was,
however, a decrease in microbial
biomass and only a small stimula-
tion of C efflux (Figure 5b). SOC
decomposition increased by ~3%
(Figure 5d, dash line), and as a
result the proportion of C efflux
made up of decomposed SOC
increased from 41% to 45%.

Doubling C and N inputs together
resulted in an additive increase in
C efflux, microbial biomass, and
dissolved C and N pools. There
was a nonadditive and sustained
increase in enzyme production
throughout the growing season,
in contrast to the leveling off of
enzyme production at day of year
~280 in the doubled N test
(Figure 5c). There was an additive
increase in both SOC decomposi-
tion and C efflux, and thus the
proportion of C efflux made up
of decomposed SOC declined
from 41% to 31%. In both the C-
and C and N-addition scenarios,
a greater proportion of the
enhanced C efflux was derived
from added C rather than native
SOC. There was a small accumula-
tion (3–4 gC m�2) of SOC in the C-
and C and N-addition scenarios.
This SOC had a C:N of 9.9 and
7.4, respectively, indicating that
microbial biomass turnover con-
tributed to soil carbon accumula-
tion (Table 3). In the N-addition
scenario, there was an SOC loss
of 1.9 gC m�2 over the 95 day
addition. The magnitude of SOC
change in any of the three scenar-
ios would be undetectable in the
field using soil sampling methods
[Fahey et al., 2005] and insignifi-
cant relative to estimates of soil
C sinks for the site [Gaudinski
et al., 2000].

Figure 4. (a) Model-predicted C efflux rate using default forcings (black
symbols), +5°C temperature increase (pink symbols), 50% of default soil
moisture (blue symbols), and 50% of default plant inputs (yellow symbols).
(b) Ratio between model-predicted C efflux for each of the three model
scenarios and the default scenario. The horizontal gray dashed line is unity.
(c) Ratio between model-predicted SOC for each of the three model scenar-
ios and the default scenario.
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4. Discussion

We have developed a C- and N-explicit model with a theoretical foundation of microbial physiological prin-
ciples. We did this by building up from the mechanistic DAMMmodel of enzyme kinetics based on substrate
supply [Davidson et al., 2012]. The combined model, DAMM-MCNiP, is unique in that it combines Arrhenius
temperature sensitivity, a simple diffusion approximation, stoichiometric constraints, and enzyme-mediated
decomposition of SOM and represents these processes with relatively low parameter collinearity. It is there-
fore a useful tool for examining interactions between microbes and environmental forcings. Unlike soil
decomposition models used in most terrestrial biosphere models for the past 40 years, which do not include
explicit feedbacks betweenmicrobes and the environment [Parton et al., 1987; Jenkinson and Coleman, 2008],
the DAMM-MCNiP model can generate hypotheses for a variety of measurable C and N pools and fluxes as
they affect microbial production of enzymes that depolymerize SOC. Below we will discuss controls

on decomposition in DAMM-MCNiP,
model performance, hysteresis, prim-
ing, limitations, and the utility of
modeling coupled C and N cycling.

4.1. Model Performance

In DAMM-MCNiP temperature and
soil moisture affect C efflux and SOC

Figure 5. Times series of C and N pools and C efflux rate under (a) C addition, (b) N addition, and (c) C and N addition. (d) C decomposition per unit microbial biomass
is plotted for all three addition scenarios. In all plots, the pool sizes and efflux rate were normalized by dividing by the respective pool size or efflux rate in the
control run. The gray vertical dotted line marks the beginning of the addition experiment. When dashed lines are not visible, they are overlaying the solid line of the
same color (e.g., microbial biomass C and N increase at the same rate). MIC C, MIC N, and ENZ refer to microbial biomass C, microbial biomass N, and enzyme
pool size, respectively.

Table 3. In a 95 Day Model Simulation of DAMM-MCNiP, the Change in
SOC Pool Size and C:N of the SOC That Either Accumulated or Depleted
Under C Addition, N Addition, and C and N Addition

Change in SOC Pool (gC m�2) C:N of ΔSOM

C addition 4.0 9.9
N addition �1.9 17.6
C and N addition 3.4 7.4
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in predictable ways. Warming consistently increased C efflux and depleted SOC, while drought lowered C
efflux and increased SOC. Of course, prolonged drought would likely decrease plant productivity and litter
inputs over the long term, thus reversing initial gains in SOC, but such ecosystem level interactions are not
included in this soil model.

The seasonality of the temperature and moisture forcings in DAMM-MCNiP affected the C efflux rate in
different ways. Although soil temperature was more tightly correlated with C efflux than was soil moisture
(Table 2), soil moisture provided important information about the variability of C efflux on short temporal
scales (Figure S3) and was better correlated with C efflux during wet-up events. This result is consistent with
higher statistical correlation between soil respiration and soil temperature at seasonal time scales but higher
correlation with soil moisture at short-time scales on the order of days, which are more characteristic of
synoptic weather patterns [Savage et al., 2009]. In DAMM, soil moisture modifies only the decomposition rate,
but in DAMM-MCNiP it directly modifies decomposition and microbial uptake and indirectly modifies other
downstream microbial processes (e.g., enzyme production, biomass growth). As a result, the combination
of DAMM with MCNiP in the present study resulted in a larger stimulation of C efflux following precipitation
events compared to DAMM alone (Table 2).

Microbial activity may also vary seasonally in ways that are not directly related to temperature or soil
moisture. Drake et al. [2013] found support for seasonal plasticity in the temperature sensitivity of a
number of processes modeled here such as microbial respiration, enzyme activity, and N mineralization.
Temperature hysteresis in soil respiration is a well-documented example of this that can be attributed to
the timing of plant inputs [Oikawa et al., 2014; Zhang et al., 2015] and influenced by feedbacks to microbial
activity [Bradford et al., 2008]. In the model, substrate limitation early in the growing season (DOY ~115,
Figure S6c) suppressed C efflux relative to soil at the same temperature in the late fall (DOY ~280,
Figure 3). By the midgrowing season, however (DOY 150–200, Figure 3), substrate limitation was alleviated
(Figure S6c). As a result, high enzyme production and microbial biomass growth produced higher rates of C
efflux than those measured at the same temperature in the midfall (DOY 220–270, Figure 3) when DOC
again declined, resulting in a lagged decrease in microbial biomass and enzyme production (Figures S6b–
S6d). The temperature hysteresis observed in the field cannot be explained by the DAMM and Arrhenius
models nor by a simple two-pool soil model (Figures S8a and S8b and Text S4) [Kelly et al., 2000;
Davidson et al., 2012; Sierra et al., 2012]. However, the observed hysteresis is consistent with that generated
by DAMM-MCNiP (Figure 3). DAMM-MCNiP’s consistency with the observed hysteresis can be weakened by
removing the seasonality of plant inputs (Figure S8d), suggesting that seasonal variations in substrate sup-
ply controlled by biotic processes (i.e., plant inputs and subsequent enzyme production and depolymeriza-
tion) are as important as physical factors (e.g., soil temperature and moisture) in explaining seasonal-scale
variation in microbial respiration.

4.2. Temperature Sensitivity of Decomposition

The sensitivity analysis identified the activation energy of decomposition as the most important parameter
for predicting the C efflux rate across the seasonal measurement period at the Harvard Forest study site.
Parameter fitting to C efflux data suggests that the value of Eadep is 64 kJ mol�1. This value is at the upper
end of the range of activation energies estimated by Davidson et al. [2012] using laboratory-based assays
of β-glucosidase activity (Eadep ≈ 59–64 kJ mol�1) but well within the range reported for forest soil in other
studies (63–84 kJ mol�1) [Yvon-durocher et al., 2012; Fang and Moncrieff, 2001]. Although organic matter
decomposition is carried out by a wide variety of extracellular enzymes, β-glucosidase has higher activity
than other commonly measured enzymes across many biomes [Steinweg et al., 2013]. Small changes in the
activation energy parameter have a large effect on C efflux rate in most models based on Arrhenius
kinetics because of the exponential relationship between rate and activation energy [Schipper et al.,
2014], suggesting that measurements of β-glucosidase activity and other soil enzymes may be important
for constraining process models of soil decomposition. Activation energy modifies the temperature sensi-
tivity of C efflux, suggesting that temperature is the most important environmental factor determining C
efflux when considering variation from spring to autumn at this site [Flanagan and Johnson, 2005;
Sinsabaugh et al., 2017]. Processes other than C efflux, such as N mineralization or microbial biomass
growth, may be more sensitive to different inputs and parameters but are beyond the scope of the
present study.
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4.3. Plant Input Addition

The stoichiometry of plant inputs determined the proportion of C efflux from native SOC in our idealized C-
and N-addition scenarios. The C- and C and N-addition scenarios caused a 40–80% increase in C efflux, which
is commonly observed in field and laboratory priming experiments [Hamer and Marschner, 2005; Dijkstra and
Cheng, 2007a; Drake et al., 2013; Han et al., 2015]. In our model scenario adding high C:N substrate, microbes
preferentially utilized the added substrate rather than decomposing native SOC, resulting in a suppression of
SOC decomposition relative to the control. The C:N of the small increase in SOC indicated that it was of micro-
bial origin, reflecting the contribution of microbial biomass turnover (C addition) or both microbial biomass
and enzyme turnover (C and N addition).

In the N-addition scenario, production of N-rich enzymes stimulated SOC decomposition resulting in a “real”
priming effect in the sense of Kuzyakov [2010]. This priming effect was accompanied by greater N mineraliza-
tion (Figure S9). Drake et al. [2013] also found that adding N-rich substrate supported enzyme production and
resulted in greater N mineralized as a result of SOC decomposition. DAMM-MCNiP predicted a small initial
stimulation of soil CO2 flux after N addition, which was a similar response to some experimental additions
of N at the Harvard Forest. These N-addition experiments observed either a modest short-term increase in
CO2 flux or no change [Micks et al., 2004; Contosta et al., 2011]. DAMM-MCNiP provides a mechanistic frame-
work for evaluating that response. Additional N allowed a pulse of enzyme production that stimulated depo-
lymerization, but released DOC was inadequate to grow microbial biomass C relative to the control. The
opposite was true under C addition: microbial biomass growth was supported, but there was not enough
N to produce enzymes. Microbes may alleviate N limitation under C addition by shifting allocation from bio-
mass growth to enzymes, or by shifting allocation to enzymes that degrade N-rich as opposed to C-rich sub-
strates, but DAMM-MCNiP does not currently support multiple enzymes. Further, microbial immobilization of
inorganic N may alleviate N limitation, and competition with mineral surfaces and plants for N could also
affect N dynamics [Zhu et al., 2016]. Substrate-specific enzymes and inorganic N cycling would be logical
follow-on areas of model development that could be useful for posing further hypotheses about coupled
C and N cycling.

A CO2 enrichment experiment in North Carolina measured an increase in soil respiration, microbial biomass,
and SOC with increasing plant C inputs [Drake et al., 2011]. Our model results are consistent with these find-
ings indicating that C addition supports a larger microbial biomass whose turnover and processing of litter
contributes to faster rates of soil respiration. The extent to which SOM accumulated depended on the C:N
of inputs. Because enzymes (C:N = 3) require more N than microbial biomass (C:N = 10), the N content of
the inputs determined whether microbes produced relatively more enzymes or biomass. This partitioning
determined the balance between SOC loss via enzymatic decomposition, and accumulation via enzyme
and microbial turnover. Variation in the stoichiometry of inputs may contribute to the large variation in both
sign and magnitude of change across plant input experiments [Dijkstra and Cheng, 2007b; Drake et al., 2011;
Lajtha et al., 2014; Zhu et al., 2014; Pisani et al., 2015].

4.4. Conclusions

We have developed a model, DAMM-MCNiP, that is parsimonious, in terms of model inputs and ease of para-
meter fitting, and modular in that it can be broken down into its simpler component models (DAMM and
MCNiP) if desired. Though there is a growing number of microbial models with explicit C-N linkages
(Table S1) [Allison, 2005; Fontaine and Barot, 2005; Kaiser et al., 2014; Moorhead et al., 2012; Waring et al.,
2013], none that we know of represents temperature, soil moisture, and nitrogen effects together. DAMM-
MCNiP includes the simplest mechanistic representation of these drivers based on enzyme kinetics, diffusion,
and stoichiometry. In particular, the relatively low collinearity of the combined model minimizes concerns
about equifinality commonly raised for more complex models. Further, DAMM-MCNiP features more robust
decomposition kinetics than that in most soil decomposition models, requiring fewer assumptions to main-
tain mass balance [Tang, 2015].

DAMM-MCNiP could be used to examine the microbial processes underlying observable phenomena, such as
seasonal hystereses in respiration rates or priming as a function of substrate stoichiometry. It can simulate
rhizosphere and bulk soil and could be scaled using diffusive transport principles (in the sense of Ahrens
et al. [2015] and Tang et al. [2013]) to represent rhizosphere bulk or surface depth gradients explicitly.
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DAMM-MCNiP can be used to project C and N cycling at the site level, using field experiments that measure C
efflux in combination with periodic sampling of soil pools or incubation experiments that target microbial
and enzyme activity in response to changes in temperature or substrate supply. Here we used DAMM-
MCNiP to demonstrate that seasonality in substrate supply and consequent microbial activity explains an
observed temperature hysteresis and that microbial response to substrate stoichiometry can theoretically
explain the variation in priming responses observed after plant input manipulations.
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